首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   55735篇
  免费   3547篇
  国内免费   2652篇
  2024年   110篇
  2023年   886篇
  2022年   1243篇
  2021年   1701篇
  2020年   1642篇
  2019年   2182篇
  2018年   1844篇
  2017年   1264篇
  2016年   1389篇
  2015年   1782篇
  2014年   2726篇
  2013年   3599篇
  2012年   1957篇
  2011年   2523篇
  2010年   1860篇
  2009年   2254篇
  2008年   2377篇
  2007年   2512篇
  2006年   2258篇
  2005年   2164篇
  2004年   1931篇
  2003年   1732篇
  2002年   1688篇
  2001年   1449篇
  2000年   1225篇
  1999年   1155篇
  1998年   1098篇
  1997年   1042篇
  1996年   969篇
  1995年   955篇
  1994年   950篇
  1993年   875篇
  1992年   872篇
  1991年   857篇
  1990年   699篇
  1989年   664篇
  1988年   620篇
  1987年   541篇
  1986年   443篇
  1985年   536篇
  1984年   609篇
  1983年   317篇
  1982年   434篇
  1981年   440篇
  1980年   354篇
  1979年   309篇
  1978年   217篇
  1977年   185篇
  1976年   197篇
  1973年   73篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
The summit of roots of various plant species may be occupied by a single, rapidly proliferating tetrahedral apical cell (as in ferns), or by a multicellular and slowly proliferating quiescent centre (as in angiosperms), or by intermediate types of cellular organizations. The present paper attempts to deduce the phylogeny of these various types of cellular patterning at the root apex.  相似文献   
993.
The development of the epidermal layer of roots of Zea is traced from the quiescent centre to the zone where root hairs develop. In the zone of cell division a three layered coat forms on the outside of the epidermal cells consisting of the outer epidermal walls, overlaid by a two-layered pellicle composed of a thick fibrillar inner layer of polysaccharide, and a thin fibrillar outer layer of protein. The epidermal cells divide several times in the same longitudinal file but rarely across a radius to give a new longitudinal file. Thus, the radial walls become much thicker than all but the original transverse walls, and packets of up to 32 daughter cells derived from a single initial may be distinguished. The pellicle develops during these divisions as a continuum over the outer walls of the daughter cells. It is proposed that the pellicle provides a stiffening to the forward end of the root which permits it to penetrate soil without bending. Support for this hypothesis is shown by the Zea mays mutant Ageotropic in which the pellicle is absent, the epidermal surface is disorganized, and which grows crookedly through soil. In the zone of extension growth of normal roots of two Zea species the pellicle thins and disappears. Circumferential strips of the pellicle were peeled off the young epidermal cells and could be stretched to twice their length. This deformation is partly the result of the pellicle stretching and breaking above the attachments of the radial walls. After normal thinning of the pellicle, detachment of the radial walls at their outer ends produces a corrugated surface in the proximal zone of the root tips. In dicotyledons (e.g., soybean), there is no similar pellicle, but a stiff root tip is produced by a long multi-layered root cap, the proximal portion of which covers the elongating epidermal surface.  相似文献   
994.
Jörg Brunet 《Plant and Soil》1994,161(2):157-166
The influence of base cation concentrations on pH and aluminium sensitivity of the woodland grasses Bromus benekenii and Hordelymus europaeus was studied in flowing solution culture experiments. Plants were exposed to low pH (3.9, experiment 1) and Al concentrations of 19 and 37 M (experiment 2) at two base cation (Ca+Mg+K) levels, all within the ranges measured in natural forest soil solutions. Elevated base cation concentrations ameliorated both H and Al toxicity, as indicated by increased root and shoot growth. In the third experiment, interactions between pH (4.3 and 4.0) and Al (0 and 19 M) were investigated. It was shown that the combined toxicity effects of H and Al were not greater than the separate H or Al effects. Tissue concentrations of base cations and Al increased with increasing concentrations in the solution, but were also influenced by the base cation : Al ratio. Relating the experimental evidence with the composition of forest soil solutions suggests an important role of soil pH and Al in controlling the distribution of the two species. Growth conditions also differ at various soil depths. Concentrations of free cationic Al were higher and base cation concentrations lower at 5–10 cm than at 0–5 cm soil depth. Increasing base cation concentrations may protect roots from both H and Al injury during periods of drought when concentrations of most elements increase in the soil solution, whereas molar ratios between base cations, H and Al remain unchanged.  相似文献   
995.
Amino acid release from roots of sterile and non-sterile, solution-grown, 7-, 21- and 60-days-old forage rape plants (Brassica napus L.), was measured over periods of up to 6 hours. With sterile plants, release of amino acids into a fixed volume of collection medium (6, 12, 70 mL) was concentration-limited, giving rise to similar convex accumulation profiles for individual acids. In contrast, amino acid accumulation in continuously circulating collection medium was not concentration limited, giving a linear accumulation pattern. The compositions of accumulating amino acids, which were similar to those measured in root extracts, did not change significantly. However, the proportions of ALA, GABA, GLU and ILE in both root extracts and root-derived amino acids increased as plants aged. Older plants released more amino acids per plant, while younger plants released more amino acids g-1 root DW. Using non-sterile plants, the patterns of change in amino acid concentration and composition in the collection medium were completely different from those determined with sterile plants. In general, with 7-days-old plants, and 60-days-old plants that had recently become non-sterile, an initial rise in the concentration of all acids was followed by a fall to low levels. The loss of amino acids was apparently due to microbial consumption. Individual amino acids attained maximum concentration at different times during the collection process. This is attributed mainly to concentration-dependent differential assimilation of amino acids, since those with the highest initial concentrations, the major components of the mixtures released from roots, declined the earliest. When calculated rates of amino acid release from roots (Rr) and microbial consumption of amino acids (Rc) were compared (for 7-days-old plants), the highest ratios of Rc/Rr were found for ASN, ARG, GLU, GLN, and LYS. This suggests a degree of selectivity for glutamate and nitrogen-rich acids on the part of the consuming micro-organisms. With 21-days old plants and 60-days old plants grown entirely under non-sterile conditions, fluctuations in amino acid concentration were similar for all acids.  相似文献   
996.
The pH of the nutrient solution bathing the roots of four-month-oldPinus contorta var.latifolia Englm. seedlings was monitored continuously between additions of nutrients. Nitrogen was supplied in the form of NH4NO3, and was added three times per week in amounts relative to seedling fresh weight. No pH change was associated with the nutrient addition cycle; however, extinguishing of the lights at night resulted in a decrease in pH of almost half a pH unit in the first hour. The pH reverted to normal within a few hours. Re-illumination resulted in a pH increase of a smaller magnitude, but over a similar time span. Estimation of the proton extrusion rate gave values of about 17 µmol (g FW root)–1 h–1.  相似文献   
997.
van Bel  Aart J. E.  van Rijen  Harold V. M. 《Planta》1994,192(2):165-175
From the cambial stage onwards, the symplasmic autonomy of sieve element/companion cell complexes (SE/CC-complexes) was followed in stems of Lupinus luteus L. by microinjection techniques. The membrane potential and the symplasmic autonomy of the mature SE/CC-complex was measured in successive internodes. A microelectrode was inserted into SE/CC-complexes or phloem parenchyma cells (PPs) and, after stabilization of the membrane potential, the membrane-impermeant fluorescent dye Lucifer Yellow CH (LYCH) was injected intracellullary. The plasmodesmata of the cambial SE/ CC precursor were gradually shut off at all interfaces beginning at the walls to be transformed into sieve plates. In the course of maturation, symplasmic discontinuity was maintained at the longitudinal walls of the complex. In the transverse walls of the SE, wide sieve pores were formed giving rise to longitudinal multicellular symplasmic domains of SE/CC-complexes. Symplasmic isolation of the files of mature SE/CC-complexes was demonstrated in several ways: (i) the membrane potential of the SE/CC-complexes (between -100 mV and -130 mV) was consistently more negative than that of the PPs (between-50 and -100 mV), (ii) No exchange of LYCH was observed between SE/CC-complexes and the PPs. Lucifer Yellow CH injected into the SEs exclusively moved to the associated CCs and to other SE/CC-complexes whereas LYCH injected into the PPs was only displaced to other PPs. (iii) The electrical coupling ratio between adjacent PPs was ten times higher than that between SE/CC-complex and PP. A gradient in the membrane potential of the SE/CC-complexes along the stem was not conclusively demonstrated.Abbreviations LYCH Lucifer Yellow CH - membrane potential - PMF proton-motive force - PP phloem parenchyma cell - SE/CC-complex sieve element/companion cell complex - SR-G sulphorhodamine G  相似文献   
998.
We used video microscopy techniques as a tool for live examination of the dynamic aspects of plant/fungus interactions. Early, dynamic responses of epidermal midrib cells of leaves from a potato cultivar (Solanum tuberosum L. cv. Datura) carrying resistance gene R1 to Phytophthora infestans (race 1: compatible interaction, race 4: incompatible interaction) were monitored. Similar responses were observed in both types of interaction, ranging from no visible reaction of invaded plant cells to hypersensitive cell death. The overall defense response of each individual cell exhibited a highly dynamic behavior that appeared to be tightly coordinated with the growth of the fungus. Initial localized reactions, including major rearrangements within the cytoplasm, occurred directly at the fungal penetration site, where rapid apposition of autofluorescent material and callose took place. If fungal invasion stopped at this stage, the host cell restored its normal cytoplasmic activity and survived. Hypersensitive cell death occurred only when fungal growth had proceeded to the formation of a clearly identifiable haustorium. In such cases, cytoplasm and nucleus conglomerated around the intracellular fungal structure, followed by a sudden collapse of the whole conglomerate and an instantaneous collapse of the fungal haustorium. Only small quantitative differences between the compatible and incompatible interactions of the two fungal races were observed for these early responses of epidermal cells. In the incompatible interaction, a slightly larger number of epidermal cells responded to fungal attack. More pronounced quantitative differences between compatible and incompatible interactions occurred upon fungal invasion of the mesophyll. These differences in the number of responding cells were not reflected at the level of gene expression: the spatial and temporal activation patterns of two defense-related genes, encoding phenylalanine ammonia-lyase and pathogenesis-related protein 1, were similar in both types of interaction.Dedicated to Professor Peter Sitte, Freiburg, Germany, on the occasion of his 65th birthday  相似文献   
999.
Cells in the root meristem are organised in longitudinal files. Repeated transverse cell divisions in these files are the prime cause of root growth. Because of the orientation of the cell divisions, we expected to find mitoses with an spindle axis parallel to the file axis. However, we observed in the root cortex ofVicia faba large number of oblique chromosome orientations. From metaphase to telophase there was a dramatic increase of the rotation of the spindle axis. Measurements of both the size of the cortex cells and the chromosome configurations indicated that most cells were too small for an orientation of the spindle parallel to the file axis. Space limitation force the spindle into an oblique position. Despite this spindle axis rotation, most daughter cells remained within the original cell file. Only in extremely flat cells did the position of the daughter nuclei forced the cell to set a plane of division parallel to the file axis, which result in side-by-side orientation of the daughter cells. Telophase spindle axis rotations are also observed inCrepis capillaris andPetunia hybrida.. These species have respectively medium and small sized chromosomes compared toVicia. Since space limitation, which causes the rotation, depends both on cell and chromosome size, the frequency and extent of the phenomenon in former two species is comparatively low.  相似文献   
1000.
(S)-(-)-Tropic acid is the acidic moiety of the tropane ester alkaloids, hyoscyamine and scopolamine (hyoscine). When tropic acid is fed to transformed root cultures of Datura stramonium L. or a Brugmansia (Datura) Candida x B. aurea hybrid, the formation of these alkaloids is inhibited. Phenyllactic acid, from which the tropoyl moiety is derived, is considerably less inhibitory. Label from (RS)-phenyl[1,3-13C2]lactic acid is incorporated at high levels into apoatropine, littorine, aposcopolamine, hyoscyamine, 7-hydroxyapoatropine, scopolamine and 7-hydroxyhyoscyamine when fed to these cultures. The presence of an excess concentration of unlabelled tropic acid has little influence on the specific incorporation into these products. It is concluded that free tropic acid is not an intermediate in hyoscyamine biosynthesis but rather that the rearrangement of phenyllactic acid occurs subsequent to its esterification.Abbreviations FM fresh mass - NMR nuclear magnetic resonance spectroscopy We are grateful to Drs. N.J. Walton, A.J. Parr, M.J.C. Rhodes (Institue of Food Research, Norwich) and B. Dräger (Münster, Germany) for helpful and critical discussions. We also wish to thank Dr. P. Bachmann (Braunschweig, Germany) for suggesting the use of the DB-17 column to separate littorine from hyoscyamine and for the modified Excel programme used to calculate the specific incorporations, Yannick Ford (AFRC Co-operative Award Studentship, University of Oxford) and Abigael Peerless for their able assistance, Dr. I. Colquhoun for assistance with some of the NMR spectroscopy and Drs. K. Shimomura (Tsukuba, Japan) and T. Hashimoto (Kyoto, Japan) for pure samples of 7-hydroxyhyoscyamine. J.G.W, gratefully acknowledges support from the Nuffield Foundation under the Small Grants Scheme to promote collaborative experimentation and M.A. is grateful to the Ministry of Education, Iran for a research scholarship.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号