首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   909篇
  免费   13篇
  国内免费   24篇
  2023年   9篇
  2022年   7篇
  2021年   8篇
  2020年   8篇
  2019年   18篇
  2018年   13篇
  2017年   13篇
  2016年   11篇
  2015年   7篇
  2014年   32篇
  2013年   54篇
  2012年   23篇
  2011年   37篇
  2010年   21篇
  2009年   37篇
  2008年   47篇
  2007年   35篇
  2006年   24篇
  2005年   34篇
  2004年   28篇
  2003年   27篇
  2002年   23篇
  2001年   17篇
  2000年   13篇
  1999年   20篇
  1998年   18篇
  1997年   15篇
  1996年   24篇
  1995年   19篇
  1994年   23篇
  1993年   17篇
  1992年   11篇
  1991年   14篇
  1990年   11篇
  1989年   11篇
  1988年   14篇
  1987年   12篇
  1986年   11篇
  1985年   26篇
  1984年   22篇
  1983年   8篇
  1982年   13篇
  1981年   23篇
  1980年   9篇
  1979年   9篇
  1978年   9篇
  1977年   11篇
  1975年   15篇
  1974年   17篇
  1973年   9篇
排序方式: 共有946条查询结果,搜索用时 31 毫秒
71.
The objective of this research was to evaluate the effect of enzymatically synthesized maltotriose fatty acid monoesters (Ferrer, M., et al. 2000 Tetrahedron 56, 4053–4061) on Aroclor 1242 solubilization and biodegradation. Three forms of the surfactant, laurate, palmitate and stearate monoester, were tested. Potential enhancement of solubilization of hydrophobic substances mediated by these non-ionic surfactants was exploited in this study. A polychlorinated biphenyl (PCB) degrading organism, Burkholderia cepacia LB400, was also selected. It was found that all surfactants were effective in solubilizing Aroclor 1242 but the rate of Aroclor 1242 biodegradation proceeded rapidly only in the presence of 6-O-palmitoylmaltotriose. For example, the addition of 48 mg 6-O-palmitoylmaltotriose/l increased the apparent solubility from 140 to 305 g/l. As a result, only 8% of the Aroclor remained at the end of 24 h incubation. In contrast, 49.2% of the Aroclor 1242 remained in the absence of surfactant. It appears that maltotriose fatty acid monoesters can significantly increase the bioavailability, and thereby accelerate the biodegradation of highly chlorinated PCBs, particularly Aroclor 1242, by Burkholderia cepacia LB400. The possibility of obtaining these biodegradable surfactants with high yield, easy recovery and high purity by using a new enzymatic methodology, makes maltotriose esters available for bioremediation purposes.  相似文献   
72.
Emission of methylsalicylate (MeSA), and occasionally of methylbenzoate (MeBA), from Arabidopsis thaliana leaves was detected following the application of some forms of both biotic and abiotic stresses to the plant. Maximal emission of MeSA was observed following alamethicin treatment of leaves. A gene (AtBSMT1) encoding a protein with both benzoic acid (BA) and salicylic acid (SA) carboxyl methyltransferase activities was identified using a biochemical genomics approach. Its ortholog (AlBSMT1) in A. lyrata, a close relative of A. thaliana, was also isolated. The AtBSMT1 protein utilizes SA more efficiently than BA, whereas AlBSMT1 catalyzes the methylation of SA less effectively than that of BA. The AtBSMT1 and AlBSMT1 genes showed expression in leaves under normal growth conditions and were more highly expressed in the flowers. In A. thaliana leaves, the expression of AtBSMT1 was induced by alamethicin, Plutella xylostella herbivory, uprooting, physical wounding, and methyl jasmonate. SA was not an effective inducer. Using a beta-glucuronidase (GUS) reporter approach, the promoter activity of AtBSMT1 was localized to the sepals of flowers, and also to leaf trichomes and hydathodes. Upon thrip damage to leaves, AtBSMT1 promoter activity was induced specifically around the lesions.  相似文献   
73.
Selective enzymic esterification of free fatty acids, obtained from blackcurrant oil by chemical saponification, with n-butanol using four immobilized lipases under microwave irradiation and under classical heating was studied. A positive effect of microwave irradiation on chemical yields of the products of the enzymic reactions and specificity of lipases were observed in comparison with a controlled heating in an incubator equipped with shaking (classical heating) applied during the identical enzyme-mediated processes. The maximum quantity of -linolenic acid (30%) was obtained with Lipozyme used as biocatalyst of the reaction under microwave irradiation. The maximum quantity of butyl -linolenate (20%) was obtained by a Pseudomonas cepacia lipase catalyzed esterification under classical heating.  相似文献   
74.
The cell surface glycoprotein CD44 is proposed as a main participant in cell adhesion and migration. We studied the function, expression, and distribution of CD44 in the invasive and metastatic F3II murine carcinoma cell line during adhesion, spreading, migration, and invasion. A mAb anti-CD44 (KM 201) dramatically blocked F3II cell adhesion on both plastic and hyaluronic acid coatings, as well as spreading on uncoated plastic surfaces (P< 0.01). KM201 mAb significantly inhibited F3II cell migration and invasion in Transwell chambers. Immunocytochemistry of spreading cells revealed that CD44 distributed in bands on the cell surface, particularly in the tip of leading edges and in the perinuclear zones of the cell membrane. CD44 antigen was never detected in filopodia or lamellipodia nor in focal adhesion-like structures, but was also detectable as strong interlamellar bands. Fully spread cells showed a decreased CD44 signal compared to cells in early stages of spreading. This decrease correlated with a reduced expression of CD44 as detected by Western blot. We also investigated the signals that may regulate CD44 expression in F3II cells. Treatment of F3II cells, with phorbol myristate acetate (PMA) or phosphatidic acid (PA, the product of PLD-dependent hydrolysis of phosphatidylcholine), significantly enhanced CD44 expression. Conversely, the treatment of F3II cells with H7, a specific PKC inhibitor, or propranolol, which blocks PA conversion to DAG, significantly decreased CD44 expression levels. These results suggest the involvement of PKC and PLD pathways in CD44 expression. These results demonstrate that CD44 plays an important role during F3II cells adhesion, spreading, migration, and invasion. In addition we provide information linking the PLD- and PKC-dependent pathways with the regulation of CD44 expression.  相似文献   
75.
The position of unsaturation, chain branching, and other structural features of fatty acids are not often apparent from the mass spectra of common derivatives such as methyl esters because of factors such as charge location at the carboxy termiunus and migration of double bonds. The spectra of picolinyl esters, on the other hand, contain fragment ions that provide this information. The esters are synthesized by reaction of the acids with thionyl chloride to form the acid chloride that is reacted with 3-pyridylcarbinol to give the ester. Under electron impact conditions in the mass spectrometer, an electron is removed from the nitrogen of the pyridine ring and a hydrogen atom is abstracted from the alkyl chain to this electron-deficient site. This process produces a radical site in the chain that initiates chain cleavage. Hydrogen atoms can be removed from any position of the chain with varying probability, depending on the chain structure. Thus, diagnostic ions are produced from each type of fatty acid whose masses and relative abundances reflect the structure of the alkyl chain and any substituents. Patterns of fragmentation for straight-chain, branched-chain, unsaturated and cyclic fatty acids are described together with those containing hydroxy-, epoxy-, keto-, and ether groups.  相似文献   
76.
Previous studies showed a slower clearance of cholesterol-labeled lymph chylomicrons in genetically hypercholesterolemic rats (RICO) compared with normocholesterolemic rats. In this study, we compared rates of lipolysis and remnant clearance in RICO versus control normocholesterolemic rats of the same strain (RAIF) or with control Wistar rats, by injecting chylomicron-like lipid emulsions labeled with 14C-triolein to trace lipolysis, and 3H-cholesteryl ester to trace remnant clearance. Our findings showed slower clearance of chylomicron remnants in RICO compared with control RAIF or with control Wistar rats. During the light period, the clearance of lipids from chylomicron-like lipid emulsions injected intravenously was significantly slower in RICO rats compared with normocholesterolemic control rats of the same strain, RAIF. Within the RICO group, clearance of emulsion triolein (TO) was faster during the dark period compared with the light period. In contrast, however, the clearance of the emulsion remnants traced by cholesteryl oleate (CO) was slower during the dark period. This behaviour was not found within the Wistar group, where the clearances of TO and CO were similar in the light and dark period. Hepatic clearance of chylomicron remnants is mediated primarily by the low density lipoprotein (LDL) receptor, the expression of which shows diurnal variation. In both Wistar and RICO rats, the expression of LDL receptors was highest during the dark period. The LDL receptors in hepatic microsomal membranes from RICO rats migrated faster on SDS polyacrylamide gel electrophoresis when compared with normal Wistar and the RAIF. However in hepatic plasma membranes the LDL receptors from RICO and Wistar rats appeared identical after immunoblotting. Furthermore the LDL receptors from RICO and Wistar rats responded similarly to treatment with neuraminidase. An alteration in post-translational processing of the LDL receptor could possibly account for the slower clearance of chylomicron remnants in the RICO.  相似文献   
77.
We report a rapid and sensitive method for separation and quantitation of free fatty acids (FFAs) in human plasma using high-performance liquid chromatography (HPLC). Two established techniques of lipid extraction were investigated and modified to achieve maximal FFA recovery in a reasonably short time period. A modified Dole extraction method exhibited greater recovery (90%) and short processing times (30 min) compared to the method of Miles et al. Reversed-phase HPLC using UV detection was used for plasma FFA separation and quantitation. Two phenacyl ester derivatives, phenacyl bromide and p-bromophenacyl bromide, were investigated in order to achieve optimal separation of individual plasma FFAs (saturated and unsaturated) with desirable detection limits. Different chromatographic parameters including column temperature, column type and elution profiles (isocratic and gradient) were tested to achieve optimal separation and recovery of fatty acids. Phenacyl bromide esters of plasma fatty acids were best resolved using an octadecylsilyl column with endcapped silanol groups. An isocratic elution method using acetonitrile–water (83:17) at 2 ml/min with UV detection at 242 nm and a column temperature of 45°C was found to optimally resolve the six major free fatty acids present in human plasma (myristic [14:0], palmitic [16:0], palmitoleic [16:1], stearic [18:0], oleic [18:1] and linoleic [18:2]), with a run time of less than 35 min and detection limits in the nmol range. The entire process including plasma extraction, pre-column derivatization, and HPLC quantitation can be completed in 90 min with plasma samples as small as 50 μl. Over a wide physiological range, plasma FFA concentrations determined using our HPLC method agree closely with measurements using established TLC–GC methods (r2≥0.95). In addition, by measuring [14C] or [3H] radioactivity in eluent fractions following HPLC separation of plasma FFA, this method can also quantitate rates of FFA turnover in vivo in human metabolic studies employing isotopic tracers of one or more fatty acids.  相似文献   
78.
79.
80.
The binding of high density lipoprotein (HDL) to scavenger receptor BI (SR-BI) is responsible for whole-body cholesterol disposal via reverse cholesterol transport. The extracellular domain of SR-BI is required for HDL binding and selective uptake of HDL-cholesterol. We identified six highly hydrophobic regions in this domain that may be important for receptor activity and performed site-directed mutagenesis to investigate the importance of these regions in SR-BI-mediated cholesterol transport. Non-conservative mutation of the regions encompassing V67, L140/L142, V164 or V221 reduced hydrophobicity and impaired the ability of SR-BI to bind HDL, mediate selective uptake of HDL-cholesterol, promote cholesterol efflux, and enlarge the cholesterol oxidase-sensitive pool of membrane free cholesterol. In contrast, conservative mutations at V67, V164 or V221 did not affect the hydrophobicity or these cholesterol transport activities. We conclude that the hydrophobicity of N-terminal extracellular regions of SR-BI is critical for cholesterol transport, possibly by mediating receptor-ligand and/or receptor-membrane interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号