首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1548篇
  免费   19篇
  国内免费   21篇
  2024年   1篇
  2023年   3篇
  2022年   6篇
  2021年   8篇
  2020年   2篇
  2019年   8篇
  2018年   6篇
  2017年   6篇
  2016年   8篇
  2015年   16篇
  2014年   29篇
  2013年   26篇
  2012年   27篇
  2011年   35篇
  2010年   36篇
  2009年   61篇
  2008年   63篇
  2007年   59篇
  2006年   45篇
  2005年   42篇
  2004年   41篇
  2003年   32篇
  2002年   23篇
  2001年   19篇
  2000年   35篇
  1999年   49篇
  1998年   36篇
  1997年   33篇
  1996年   36篇
  1995年   57篇
  1994年   54篇
  1993年   42篇
  1992年   45篇
  1991年   52篇
  1990年   48篇
  1989年   48篇
  1988年   49篇
  1987年   39篇
  1986年   49篇
  1985年   48篇
  1984年   45篇
  1983年   24篇
  1982年   49篇
  1981年   46篇
  1980年   44篇
  1979年   37篇
  1978年   8篇
  1977年   11篇
  1976年   1篇
  1974年   1篇
排序方式: 共有1588条查询结果,搜索用时 15 毫秒
131.
Summary. Asynchronous cultures of wild-type Euglena gracilis were tested for their morphophysiological response to 10mM MnSO4. Growth was only moderately slowed (15%), while oxygen evolution was never compromised. Inductively coupled plasma analyses indicated that the Mn cell content doubled with respect to controls, but no signs of localised accumulation were detected with X-ray microanalysis. Evident morphological alterations were found at the plastid level with transmission electron microscopy and confocal laser scanning microscopy. An increase in the plastid mass, accompanied by frequent aberrations of chloroplast shape and of the organisation of the thylakoid system, was observed. These aspects paralleled a decrease in the molar ratio of chlorophyll a to b and an increase in the fluorescence emission ratio of light-harvesting complex II to photosystem II, the latter evaluated by in vivo single-cell microspectrofluorimetry. These changes were observed between 24 and 72h of treatment. However, the alterations in the pigment pattern and photosystem II fluorescence were no longer observed after 96h of Mn exposure, notwithstanding the maintenance of the large plastid mass. The response of the photosynthetic apparatus probably allows the alga to limit the photooxidative damage linked to the inappropriately large peripheral antennae of photosystem II. On the whole, the resistance of Euglena gracilis to Mn may be due to an exclusion–tolerance mechanism since most Mn is excluded from the cell, and the small amount entering the organism is tolerated by means of morphophysiological adaptation strategies, mainly acting at the plastid level.Correspondence and reprints: Dipartimento delle Risorse Naturali e Culturali, Università degli Studi di Ferrara, Corso Porta Mare 2, 44100 Ferrara, Italy.  相似文献   
132.
Summary. We studied whether the monokaryotic chloroplast (moc) mutation affects the transmission of chloroplast and mitochondrial DNA in Chlamydomonas species. We used a previously isolated moc mutant from our cell line G33, which had only one large chloroplast nucleus. To obtain zygotes we crossed the mutant cells with wild-type cells, and mutant cells with receptive mates (females [mt+] with males [mt–]). In these zygotes, we recorded preferential dissolution of mt– parental chloroplast nuclei and fusion of the two cell nuclei. Antibiotic-resistance markers of chloroplast DNA were maternally transmitted in all crosses. PCR analysis of the cytochrome b (cob) gene sequence showed that the mitochondrial DNA was paternally transmitted to offspring. These results suggest that the moc mutation did not affect the organelle DNA transmission.Correspondence and reprints: Laboratory of Cell and Functional Biology, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903-0213, Japan.  相似文献   
133.
Miyagishima S  Kuroiwa H  Kuroiwa T 《Planta》2001,212(4):517-528
The timing and manner of disassembly of the apparatuses for chloroplast division (the plastid-dividing ring; PD ring) and mitochondrial division (the mitochondrion-dividing ring; MD ring) were investigated in the red alga Cyanidioschyzon merolae De Luca, Taddei and Varano. To do this, we synchronized cells both at the final stage of and just after chloroplast and mitochondrial division, and observed the rings in three dimensions by transmission electron microscopy. The inner (beneath the stromal face of the inner envelope) and middle (in the inter-membrane space) PD rings disassembled completely, and disappeared just before completion of chloroplast division. In contrast, the outer PD and MD rings (on the cytoplasmic face of the outer envelope) remained in the cytosol between daughter organelles after chloroplast and mitochondrial division. The outer rings started to disassemble and disappear from their surface just after organelle division, initially clinging to the outer envelopes at both edges before detaching. The results suggest that the two rings inside the chloroplast disappear just before division, and that this does not interfere with completion of division, while the outer PD and MD rings function throughout and complete chloroplast and mitochondrial division. These results, together with previous studies of C. merolae, disclose the entire cycle of change of the PD and MD rings. Received: 19 May 2000 / Accepted: 3 August 2000  相似文献   
134.
Although universal or consensus chloroplast primers are available, they are limited by their number and genomic distribution. Therefore, a set of consensus chloroplast primer pairs for simple sequence repeats (ccSSRs) analysis was constructed from tobacco (Nicotiana tabacum L.) chloroplast sequences. These were then tested for their general utility in the genetic analysis of a diverse array of plant taxa. In order to increase the number of ccSSRs beyond that previously reported, the target sequences for SSR motifs was set at A or T (n 7) mononucleotide repeats. Each SSR sequence motif, along with ±200-bp flanking sequences from the first of each mononucleotide base repeat, was screened for homologies with chloroplast DNA sequences of other plant species in GenBank databases using BLAST search procedures. Twenty three putative marker loci that possessed conserved flanking sequence spans were selected for consensus primer pair construction using commercially available computer algorithms. All primer pairs produced amplicons after PCR employing genomic DNA from members of the Cucurbitaceae (six species) and Solanaceae (four species). Sixteen, 22 and 19 of the initial 23 primer pairs were successively amplified by PCR using template DNA from species of the Apiaceae (two species), Brassicaceae (one species) and Fabaceae (two species), respectively. Twenty of 23 primer pairs were also functional in three monocot species of the Liliaceae [onion (Allium cepa L.) and garlic (Allium sativum L.)], and the Poaceae [oat (Avena sativa L.)]. Sequence analysis of selected ccSSR fragments suggests that ccSSR length and sequence variation could be useful as a tool for investigating the genetic relationships within a genus or closely related taxa (i.e., tribal level). In order to provide for a marker system having significant coverage of the cucumber chloroplast genome, ccSSR primers were strategically "recombined" and named recombined consensus chloroplast primers (RCCP) for PCR analysis. Successful amplification after extended-length PCR of 16 RCCP primer pairs from cucumber (Cucumis sativus L.) DNA suggested that the amplicons detected are representative of the cucumber chloroplast genome. These RCCP pairs, therefore, could be useful as an initial molecular tool for investigation of traits related to a chloroplast gene(s) in cucumber, and other closely related species.Communicated by C. Möllers  相似文献   
135.
Cytoplasmic line 2 (CL2) has been previously reported as a cytoplasmically inherited chlorophyll-deficient mutant selected from a chloroplast-mutator genotype of barley. It was characterized by a localized effect on the upper part of the first-leaf blade. At emergence the CL2 seedlings-phenotype varied from a grainy light green to an albino color. They gradually greened during the following days, starting from the base of the blade and extending to cover most of its surface when it was fully grown. The present results, from both light microscopy and transmission electron microscopy (TEM), confirmed the previously described positional and time-dependent expression of the CL2 syndrome along the first-leaf blade. During the first days after emergence, light microscopy showed a normally developed chloroplast at the middle part of the CL2 first-leaf blade, meanwhile at the tip only small plastids were observed. TEM showed that the shapes and the internal structure of the small plastids were abnormal, presenting features of proplastids, amyloplasts and/or senescent gerontoplasts. Besides, they lack plastid ribosomes, contrasting with what was observed inside chloroplasts from normal tips, which presented abundant ribosomes. Phenotypic observations and spectrophotometric analysis of seedlings produced by mother plants that had been grown under different temperatures indicated that higher temperatures during seed formation were negatively associated with pigment content in CL2 seedlings. In contrast, higher temperatures during the growth of CL2 seedlings have been associated with increased pigment content. Aqueous solution with kanamycin and streptomycin, which are antibiotics known to interfere with plastid gene translation, were used for imbibition of wild-type and CL2 seeds. Antibiotic treatments differentially reduced the chlorophyll content in the upper part of the first-leaf blade in CL2, but not in wild-type seedlings. These results suggest that in the wild-type, plastid-gene proteins which are necessary for chloroplast development and chlorophyll synthesis in the upper part of the first-leaf blade are usually synthesized during embryogenesis. However, under certain circumstances, in CL2 seedlings, they would be synthesized after germination. In addition, a shortening of the sheath has been observed in association with pigment decrease suggesting the existence of plastid factors affecting the expression of some nuclear genes. We consider the CL2 mutant a unique experimental material useful to study biological phenomena and external factors regulating plastid, and nuclear gene expression during embryogenesis and early seedling development.Communicated by R. Hagemann  相似文献   
136.
For the purpose of phylogeographic study of lucidophyllous (evergreen broad-leaved) forests in Japan, we surveyed intraspecific chloroplast DNA (cpDNA) variation in 41 component species of such forests. Intraspecific cpDNA variations were detected in 14 species. In 15 species and one species group, 16 non-coding cpDNA regions were examined to find intraspecific sequence variation. The extent of variation in these regions was compared. The largest amount of intraspecific variation was detected in the rps16 region. A relatively large amount of intraspecific variation was detected in the petD-rpoA, rpl16, and trnL-F regions. It is suggested that these regions of cpDNA would be useful for detecting intraspecific variation in plant species, and could provide valuable information for various research purposes.  相似文献   
137.
138.
Weston E  Thorogood K  Vinti G  López-Juez E 《Planta》2000,211(6):807-815
Plants acclimate to changes in light quantity by altering leaf-cell development and the accumulation of chloroplast components, such that light absorption is favoured under limiting illumination, and light utilisation under non-limiting conditions. Previous evidence suggests an involvement of a high-light photosynthetic redox signal in the down-regulation of the accumulation of the light-harvesting complexes of photosystem II (Lhcb) and the expression of the Lhcb genes, and of a blue-light signal in the control of leaf development and in the increase in photosynthetic capacity, as affected by the accumulation of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). We examined the internal anatomy of leaves, the ultrastructure of chloroplasts and accumulation of light-harvesting complexes and Rubisco in wild-type Arabidopsis thaliana (L.) Heynh. and in mutants in each of the three known blue-light photoreceptors, cryptochrome 1, cryptochrome 2 and phototropin, as well as a mutant in both cryptochromes. Our results indicate an extensive capacity of the Arabidopsis mesophyll cells to adapt to high light fluence rate with an increase in palisade elongation. Under high light, chloroplasts showed increased starch accumulation and reductions in the amount of granal thylakoids per chloroplast, in the proportion of chlorophyll b relative to chlorophyll a, and in the accumulation of the major Lhcb polypeptides. The responses were similar for all four mutants, with respect to their wild types. The results are consistent with either a complete redundancy in function between cryptochromes and phototropin, or their absence of involvement in the light-quantity responses tested. We observed minimal effects of light quantity on Rubisco accumulation over the range of fluence rates used, and conclude that elongation of palisade mesophyll cells and accumulation of Rubisco are controlled separately. This indicates that light acclimation must be the result of a number of individual elementary responses. Quantitative differences in the acclimatory responses were observed between the Landsberg erecta and Columbia wild-type ecotypes used. Received: 4 April 2000 / Accepted: 14 July 2000  相似文献   
139.
Savchenko G  Wiese C  Neimanis S  Hedrich R  Heber U 《Planta》2000,211(2):246-255
 The regulation of pH in the apoplast, cytosol and chloroplasts of intact leaves was studied by means of fluorescent pH indicators and as a response of photosynthesis to acid stress. The apoplastic pH increased under anaerobiosis. Aeration reversed this effect. Apoplastic responses to CO2, HCl or NH3 differed considerably. Whereas HCl and ammonia caused rapid acidification or alkalinization, the return to initial pH values was slow after cessation of fumigation. Addition of CO2 either did not produce the acidification expected on the basis of known apoplastic buffering or even caused some alkalinization. Removal of CO2 shifted the apoplastic pH into the alkaline range before the pH returned to initial steady-state levels. In the presence of vanadate, the alkaline shift was absent and the apoplastic pH returned slowly to the initial level when CO2 was removed from the atmosphere. In contrast to the response of the apoplast, anaerobiosis acidified the cytosol or, in some species, had little effect on its pH. Acidification was rapidly reversed upon re-admission of oxygen. The CO2-dependent pH changes were very fast in the cytosol. Considerable alkalinization was observed after removal of CO2 under aerobic, but not under anaerobic conditions. Rates of the re-entry of protons into the cytosol during recovery from CO2 stress increased in the presence of oxygen with the length of previous exposure to high CO2. Effective pH regulation in the chloroplasts was indicated by the recovery of photosynthesis after the transient inhibition of photosynthetic electron flow when CO2 was increased from 0.038% to 16% in air. As photosynthesis became inhibited under high CO2, reduction of the electron transport chain increased transiently. The time required for recovery of photosynthesis from inhibition during persistent CO2 stress was similar to the time required for establishing steady-state pH values in the cytosol under acid stress. The high capacity of leaf cells for the rapid re-attainment of pH homeostasis in the apoplast and the cytoplasm under acid or alkaline stress suggested the rapid activation or deactivation of membrane-localised proton-transporting enzymes and corresponding ion channel regulation for co-transport of anions or counter-transport of cations together with proton fluxes. Acidification of the cytoplasm appeared to activate energy-dependent proton export primarily into the vacuoles whereas apoplastic alkalinization resulted in the pumping of protons into the apoplast. Proton export rates from the cytosol into the apoplast after anaerobiosis were about 100 nmol (m2 leaf area)−1 s−1 or less. Proton export under acid stress into the vacuole was about 1200 nmol m−2 s−1. The kinetics of pH responses to the addition or withdrawal of CO2 indicated the presence of carbonic anhydrase in the cytosol, but not in the apoplast. Received: 19 July 1999 / Accepted: 29 December 1999  相似文献   
140.
RFLPs of cpDNA were examined for 18 species ofAster, six species ofKalimeris, two species ofMiyamayomena and one species and one variety ofHeteropappus from Japan, using 16 restriction endonucleases. Approximately 275 restriction sites were surveyed, and a total of 74 restriction site mutations was detected, and 31 of these were phylogenetically informative. Sixteen most parsimonious trees constructed from Wagner parsimony analysis indicated the polyphyly ofKalimeris andMiyamayomena sensu Kitamura;K. miqueliana belongs to a different clade from the remaining species ofKalimeris, and two species ofMiyamayomena did not make a single clade. This result suggests that the shortening or loss of pappus have happened parallelly in different evolutionary lineages. We must be careful to assess the pappus character in taxonomy and phylogeny, and it is desirable to examine their phylogenetic relationships using a molecular data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号