首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   537篇
  免费   39篇
  国内免费   66篇
  642篇
  2024年   2篇
  2023年   3篇
  2022年   9篇
  2021年   6篇
  2020年   10篇
  2019年   9篇
  2018年   8篇
  2017年   18篇
  2016年   20篇
  2015年   14篇
  2014年   25篇
  2013年   35篇
  2012年   21篇
  2011年   27篇
  2010年   26篇
  2009年   18篇
  2008年   30篇
  2007年   19篇
  2006年   14篇
  2005年   18篇
  2004年   16篇
  2003年   26篇
  2002年   20篇
  2001年   15篇
  2000年   8篇
  1999年   17篇
  1998年   12篇
  1997年   17篇
  1996年   11篇
  1995年   8篇
  1994年   9篇
  1993年   11篇
  1992年   9篇
  1991年   16篇
  1990年   7篇
  1989年   9篇
  1988年   5篇
  1987年   10篇
  1986年   14篇
  1985年   2篇
  1984年   11篇
  1983年   7篇
  1982年   11篇
  1981年   10篇
  1980年   9篇
  1979年   5篇
  1978年   7篇
  1977年   5篇
  1976年   2篇
  1974年   1篇
排序方式: 共有642条查询结果,搜索用时 15 毫秒
101.
Inactivation of photosystem II (PSII) in the alga Chlorella pyrenoidosa Chick induced by photoinhibition (high light illumination at an intensity 10 times higher than photosynthesis-saturating light) or by incubation at a supraoptimum temperature (41°C) in darkness, resulted in a decrease in the relative yield of variable fluorescence due to a selective suppression of the slow phase of its rise. This indicates that low-activity PSII complexes, with a low efficiency of QA formation are inactivated first. We suppose that the transition of normal PSII complexes to a low-activity state precedes the complete loss of their photochemical activity. The existence of some common stages of PSII inactivation, when induced by photoinhibition or incubation at supraoptimum temperature in darkness, is discussed. We suggest a scheme of the sequential stages in the regulation of photosynthetic light reactions involving a reversible redox-dependent PSII inactivation.  相似文献   
102.
小球藻净化污水中氮磷能力的研究   总被引:14,自引:0,他引:14  
在小球藻液中分别添加不同浓度的N、P溶液,研究小球藻净化氮、磷的能力。实验结果表明,氮磷组合浓度不同时对小球藻吸收氮、磷有一定影响;在最佳pH为8.0-8.5的条件下,吸收率可达80%左右;升高温度或加强光照有利于小球藻对磷、氮的吸收。小球藻对氮、磷的吸附随着培养时间的延长而逐渐升高。  相似文献   
103.
构建了包含虾青素合成途径的小球藻代谢网络模型,集成文献报道同位素标定的小球藻代谢通量数据,估算了胞内代谢通量分布。在正常和缺氮培养条件下,虾青素的代谢通量分别为0.38和0.35。计算得到基元模式共640条,通过最大熵原理算法求取了正常培养和缺氮培养条件下的基元模式概率。存在4条关键基元模式,在2种培养条件下,其基元模式概率之和分别为60.95%和77.53%。虾青素的最大理论合成产率为11.27%,但是这4条关键基元模式并不包括虾青素的合成反应。  相似文献   
104.
Green synthesis method is being increasingly used in the development of safe, stable, and eco-friendly nanostructures with biological resources. In this study, extracellular and intracellular synthesis of gold nanoparticles (AuNPs) was carried out using green algae Chlorella sorokiniana Shihira & R.W. Fresh algae were isolated and identified from Musaözü Pond located in the province of Eskişehir and then extraction process were performed. Optimization studies were studied using pH value, metal salt concentration, and time parameters for extracellular synthesis and using only time parameter for intrasellular synthesis. Since more controlled and optimum conditions can be achieved in the production of AuNPs by extracellular synthesis, these nanoparticles (NPs) were used for characterization and antifungal activity studies. Optical, physical, and chemical properties of synthesized NPs were characterized by UV visible spectrophotometer (UV-Vis), dynamic light scattering (DLS), Zetasizer, X-Ray diffraction (XRD), Fourier transform ınfrared spectroscopy (FTIR), field emission scanning electron microscope (FE-SEM), ınductively coupled plasma mass spectrometer (ICP-MS) and transmission electron microscope (TEM) analysis. The optimum conditions for AuNPs synthesis were determined as 1 mM for HauCl4 concentration, 6 for pH value, and 60th min for time. AuNPs obtained from extracellular synthesis from C. sorokiniana extract are 5–15 nm in size and spherical shape. TEM images of extracellular synthesis show noticeable cell wall and membrane damages, cytoplasma dissolutions, and irregularities. AuNPs obtained by intracellular synthesis are in 20–40 nm size and localized in the cell wall and cytoplasm. These NPs exhibited significant antifungal activity against C. tropicalis, C. glabrata, and C. albicans isolates. AuNPs obtained by algae-mediated green synthesis have a significant potential for medical and industrial use, and this eco-friendly synthesis method can be easily scaled for future studies.  相似文献   
105.
Kodama Y  Fujishima M 《Protist》2008,159(3):483-494
Cycloheximide is known to inhibit preferentially protein synthesis of symbiotic Chlorella of the ciliate Paramecium bursaria, but to hardly host protein synthesis. Treatment of algae-bearing Paramecium cells with cycloheximide induces synchronous swelling of all perialgal vacuoles that are localized immediately beneath the host's cell membrane. In this study, the space between the symbiotic algal cell wall and the perialgal vacuole membrane widened to about 25 times its normal width 24 h after treatment with cycloheximide. Then, the vacuoles detached from beneath the host's cell membrane, were condensed and stained with Gomori's solution, and the algae in the vacuoles were digested. Although this phenomenon is induced only under a fluorescent light condition, and not under a constant dark condition, this phenomenon was not induced in paramecia treated with cycloheximide in the light in the presence of the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. These results indicate that algal proteins synthesized in the presence of algal photosynthesis serve some important function to prevent expansion of the perialgal vacuole and to maintain the ability of the perialgal vacuole membrane to protect itself from host lysosomal fusion.  相似文献   
106.
This review covers the possibility of aerobic thermophilic bacteria (Bacillus strains and thermophilic actinomycetes) and microalgae (Chlorella strains and marine algae) as new biocatalysts for the stereoselective reduction of - and β-keto esters. The mechanistic interpretation of the reduction by a thermophilic actinomycete is also delineated.  相似文献   
107.
The brassinosteroids (BRs) occur ubiquitously in the plant kingdom. The occurrence of BRs has been demonstrated in almost every part of higher plants, such as pollen, flower buds, fruits, seeds, vascular cambium, leaves, shoots and roots. In this study, BRs were isolated and identified in the culture of wild-type Chlorella vulgaris. Seven BRs, including teasterone, typhasterol, 6-deoxoteasterone, 6-deoxotyphasterol, 6-deoxocastasterone, castasterone and brassinolide, were identified by GC–MS. All compounds belong to the BR biosynthetic pathway. The results suggest that early and late C6 oxidation pathways are operating in C. vulgaris. This study represents the first isolation of BRs from C. vulgaris cultures.  相似文献   
108.
A photobioreactor containing microalgae is a highly efficient system for converting carbon dioxide (CO2) into biomass. Using a microalgal photobioreactor as a CO2 mitigation system is a practical approach to the problem of CO2 emission from waste gas. In this study, a marine microalga, Chlorella sp. NCTU‐2, was applied to assess biomass production and CO2 removal. Three types of photobioreactors were designed and used: (i) without inner column (i.e. a bubble column), (ii) with a centric‐tube column and (iii) with a porous centric‐tube column. The specific growth rates (μ) of the batch cultures in the bubble column, the centric‐tube and the porous centric‐tube photobioreactor were 0.180, 0.226 and 0.252 day?1, respectively. The porous centric‐tube photobioreactor, operated in semicontinuous culture mode with 10% CO2 aeration, was evaluated. The results show that the maximum biomass productivity was 0.61 g/L when one fourth of the culture broth was recovered every 2 days. The CO2 removal efficiency was also determined by measuring the influent and effluent loads at different aeration rates and cell densities of Chlorella sp. NCTU‐2. The results show that the CO2 removal efficiency was related to biomass concentration and aeration rate. The maximum CO2 removal efficiency of the Chlorella sp. NCTU‐2 culture was 63% when the biomass was maintained at 5.15 g/L concentration and 0.125 vvm aeration (volume gas per volume broth per min; 10% CO2 in the aeration gas) in the porous centric‐tube photobioreactor.  相似文献   
109.
Chlorella virus DNA ligase (ChVLig) is a minimal (298-amino acid) pluripotent ATP-dependent ligase composed of three structural modules—a nucleotidyltransferase domain, an OB domain, and a β-hairpin latch—that forms a circumferential clamp around nicked DNA. ChVLig provides an instructive model to understand the chemical and conformational steps of nick repair. Here we report the assignment of backbone 13C, 15N, 1HN resonances of this 34.2 kDa protein, the first for a DNA ligase in full-length form.  相似文献   
110.
To be able to study the effect of mixing as well as any other parameter on productivity of algal cultures, we designed a lab‐scale photobioreactor in which a short light path (SLP) of (12 mm) is combined with controlled mixing and aeration. Mixing is provided by rotating an inner tube in the cylindrical cultivation vessel creating Taylor vortex flow and as such mixing can be uncoupled from aeration. Gas exchange is monitored on‐line to gain insight in growth and productivity. The maximal productivity, hence photosynthetic efficiency, of Chlorella sorokiniana cultures at high light intensities (1,500 μmol m?1 s?1) was investigated in this Taylor vortex flow SLP photobioreactor. We performed duplicate batch experiments at three different mixing rates: 70, 110, and 140 rpm, all in the turbulent Taylor vortex flow regime. For the mixing rate of 140 rpm, we calculated a quantum requirement for oxygen evolution of 21.2 mol PAR photons per mol O2 and a yield of biomass on light energy of 0.8 g biomass per mol PAR photons. The maximal photosynthetic efficiency was found at relatively low biomass densities (2.3 g L?1) at which light was just attenuated before reaching the rear of the culture. When increasing the mixing rate twofold, we only found a small increase in productivity. On the basis of these results, we conclude that the maximal productivity and photosynthetic efficiency for C. sorokiniana can be found at that biomass concentration where no significant dark zone can develop and that the influence of mixing‐induced light/dark fluctuations is marginal. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号