首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   3篇
  国内免费   9篇
  2022年   1篇
  2021年   1篇
  2020年   6篇
  2019年   7篇
  2018年   7篇
  2017年   6篇
  2016年   5篇
  2015年   3篇
  2014年   14篇
  2013年   21篇
  2012年   4篇
  2011年   18篇
  2010年   7篇
  2009年   23篇
  2008年   21篇
  2007年   20篇
  2006年   17篇
  2005年   27篇
  2004年   16篇
  2003年   13篇
  2002年   12篇
  2001年   4篇
  2000年   2篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   7篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1985年   3篇
  1983年   2篇
  1974年   1篇
排序方式: 共有297条查询结果,搜索用时 15 毫秒
261.
Ovoglycoprotein from chicken egg whites (OGCHI) has been used as a chiral selector to separate drug enantiomers. However, neither the amino acid sequence of OGCHI nor the responsible part for the chiral recognition (protein domain or sugar moiety) has yet to be determined. First, we isolated a cDNA clone encoding OGCHI, and clarified the amino acid sequence of OGCHI, which consists of 203 amino acids including a predictable signal peptide of 20 amino acids. The mature OGCHI shows 31-32% identities to rabbit and human alpha(1)-acid glycoproteins (alpha(1)-AGPs). Thus, OGCHI should be the chicken alpha(1)-AGP. Second, the recombinant chicken alpha(1)-AGP was prepared by the Escherichia coli expression system, and its chiral recognition ability was confirmed by capillary electrophoresis. Since proteins expressed in E. coli are not modified by any sugar moieties, this result shows that the protein domain of the chicken alpha(1)-AGP is responsible for the chiral recognition.  相似文献   
262.
Protein-substrate interactions in enzymatic, neurological, and immunological systems are typically characterized by a high degree of stereoselectivity towards complex substrates. We propose a novel stereocenter-recognition (SR) model for stereoselectivity of proteins (or receptors in general) towards substrates that have multiple stereocenters, based on the topology of substrate stereocenters. The model provides the minimum number of substrate locations that need to enter into binding, nonbinding, or repulsive interactions with receptor sites, for stereoselectivity to occur. According to this model, a substrate location may interact with multiple receptor sites, or multiple substrate locations may interact with a single receptor site, but a stereoselective receptor has to offer, in the correct geometry, at least as many interactions as the required minimum number of substrate locations. The SR model predicts that stereoselectivity towards an acyclic substrate with N stereocenters distributed along a single chain requires interactions involving a minimum of N + 2 substrate locations, distributed over all stereocenters in the substrate, such that effectively three locations exist per stereocenter. Thus, enantioselective recognition of molecules with one chiral center requires a protein to interact with a minimum of three substrate locations, while stereoselectivity towards substrates with two or three stereocenters requires interactions with a minimum of four or five substrate locations, respectively, and so on. We demonstrate the general applicability of this model to protein-substrate interactions by interpreting several previous experimental observations.  相似文献   
263.
Firefly luciferase is able to convert L-luciferin into luciferyl-CoA even under ordinary aerobic luciferin-luciferase reaction conditions. The luciferase is able to recognize strictly the chirality of the luciferin structure, serving as the acyl-CoA synthetase for L-luciferin, whereas d-luciferin is used for the bioluminescence reaction. D-Luciferin inhibits the luciferyl-CoA synthetase activity of L-luciferin, whereas L-luciferin retards the bioluminescence reaction of D-luciferin, meaning that both enzyme activities are prevented by the enantiomer of its own substrate.  相似文献   
264.
The SAR study on a phage library-derived non-phosphorylated cyclic peptide ligand of Grb2-SH2 domain indicates that the configuration of the cyclization linkage is crucial for assuming the active binding conformation. When the thioether linkage was oxidized to the two chiral sulfoxides, the R-configured sulfoxide-cyclized peptide displayed 10-30 times more potency than the corresponding S-configured one in binding affinity to the Grb2-SH2 domain. In this paper, the solution structures of such a pair of sulfoxide-bridged cyclic peptide diastereoisomers, i.e., cyclo[CH(2)CO-Gla(1)-L-Y-E-N-V-G-NPG-Y-(R/S)C(O)(10)]-amide, were determined by NMR and molecular dynamics simulation. Results indicate that the consensus sequence of Y(3)-E(4)-N(5)-V(6) in both diastereoisomers adopt a beta-turn conformation; however, the R-configured peptide forms an extended structure with a circular backbone conformation, while the S-configured isomer forms a compact structure with key residues buried inside the molecule. The average root-mean-square deviations were found to be 0.756 and 0.804 A, respectively. It is apparent that the chiral S-->O group played a key role in the solution structures of the sulfoxide-bridged cyclic peptides. The R-sulfoxide group forms an intramolecular hydrogen bond with the C-terminal amide, conferring a more rigid conformation with all residues protruding outside except for Leu2, in which the Gla1 and Tyr3 share an overlapping function as previous SAR studies proposed. Additionally, the extended structure endows a more hydrophilic binding surface of the R-configured peptide to facilitate its capture by its targeted protein. In comparison, the S-configured sulfoxide was embedded inside the ligand peptide leading to a compact structure, in which the essential residues of Gla1, Tyr3, and Asn5 form multiple intramolecular hydrogen bonds resulting in an unfavorable conformational change and a substantial loss of the interaction with the protein. The solution structures disclosed by our NMR and molecular dynamics simulation studies provide a molecular basis for understanding how the chirality of the cyclization linkage remarkably discriminates in terms of the binding affinity, thus advancing the rational design of potent non-phosphorylated inhibitors of Grb2-SH2 domain as antitumor agents.  相似文献   
265.
Chen Y  Huang H  Yu X  Qi L 《Carbohydrate research》2005,340(12):2024-2029
A multiwavelength surface plasmon resonance (mwSPR) approach has been developed to study the chiral discrimination between D- and L-cystine (Cys). A monolayer of the two enantiomers was separately assembled on a pair of gold films of about 50 nm in thickness and their resonance wavelength shifts, Deltalambda, were measured under a continuous flow of an identical chiral probe solution. Dextran sulfate (DS) was found to be an excellent chiral probe because it has rich chiral centers and is large enough to produce sensitive mwSPR response. The chiral discrimination was investigated either by Deltalambda(max), the maximum resonance wavelength shift in recognition equilibrium, or by recognition kinetics (Deltalambda vs time). The equilibrium data showed that D-Cys yielded always the smaller Deltalambda(max) as compared to L-Cys at pH 5.0 or above. This differentiation was enlarged by raising the probe content and became naught at pH <4.5. The kinetic results showed that, as pH increased from 5.0 to 7.5, the non-equilibrium Deltalambda for D-Cys rose above the level for L-Cys at the first 30s of recognition but came back gradually to its equilibrium position after about 150 s, with crossing at 50--150 s depending on DS concentration. This phenomenon was thought to be the result of molecular orientation adjustment after DS binding to D-Cys. Both kinetic and thermodynamic mechanisms were thus considered to be deeply involved in the investigated chiral recognition system.  相似文献   
266.
A highly new charged cyclodextrin (CD) derivatives, (6-O-carboxymethyl-2,3-di-O-methyl)cyclomaltoheptaoses (CDM-beta-CDs), was synthesized and characterized as anionic reagents for capillary electrophoresis (CE) in an electrokinetic chromatography mode of separation. Substitution with dimethyl groups at the secondary hydroxyl sites of the CD is aimed at influencing the magnitude and selectivity of analyte-CD interactions, while substitution by carboxymethyl groups at the primary hydroxyl sites provides for high charge and electrophoretic mobility. Full regioselective methylation at the secondary hydroxyl sites was achieved in this work, while substitution at the primary hydroxyl sites generated a mixture of multiply charged products. The separation performance of CDM-beta-CD was evaluated using a variety of analyte mixtures. The results obtained from commercially available negatively charged cyclodextrins, heptakis(2,3-di-O-methyl-6-O-sulfo)cyclomaltoheptaose (HDMS-beta-CD) and O-(carboxymethyl)cyclomaltoheptaose (CM-beta-CD) with an average degree of substitution one (DS 1), were compared to CDM-beta-CD using a sample composed of eight positional isomers of dihydroxynaphthalene. Four hydroxylated polychlorobiphenyl derivatives, a group of chiral and isomeric catchecins, and chiral binaphthyl compounds were also separated with CDM-beta-CD. The effect of adding neutral beta-cyclodextrin (beta-CD) into the running buffer containing charged cyclodextrins was investigated and provided evidence of significant inter-CD interactions. Under certain running buffer conditions, the charged cyclodextrins also appear to adsorb to the capillary walls to various degrees.  相似文献   
267.
A series of chiral bimetallic complexes have been prepared containing both Cu(II) and Hg(II) metal centers. The complexes possess chiral salen ligands which host Cu(II) in the center of the cis-N2O2 chromophore and Hg(II) via two oxygen atoms of the chromophore. Halogen and acetate groups from mercury salts interact with the Cu(II) center. The X-ray crystallographic data of 11 reveals a short distance of Cl?Cu (3.22-3.26 Å). EPR study also discloses a strong interaction, in particular, of acetate group with Cu.  相似文献   
268.
The chiral recognition of the selected aromatic chiral compounds by native -cyclodextrin (-CD) based on bimodal complexation was studied using a flexible docking algorithm FDOCK. A quantitative empirical free energy relationship model was employed to predict the complex stability constants and the preferred binding modes. The results showed that the calculated complex stability constants are in good agreement with the experimental data. Furthermore, the main force responsible for host-guest complexation is the van der Waals force and the chiral molecules are completely included into the -CD cavity. The chiral recognition for the selected aromatic chiral compounds is the result of the van der Waals force counterbalancing with the other effects, such as the electrostatic interaction and the hydrophobic effect.Figure The favorable structures for the inclusion complexes of (S)_phenylbutyric with -CD. View in the plane normal to the Z-axis. -CD is shown in surface and (S)_phenylbutyric in CPK representation.  相似文献   
269.
Steady-state pharmacokinetics of indobufen (INDB) enantiomers administered as racemic INDB (rac-INDB) tablets and bleeding time were studied in patients. Two-hundred mg INDB tablets (Ibustrin) were administered twice daily for 7 days to obliterative atherosclerosis patients. Enantiospecific reversed phase (RP) HPLC with UV detection (lambda = 275 nm) was used for determination of INDB enantiomers in serum of patients. The ratio AUCR:AUCS equalled 1.7 +/- 0.2 as a result of higher (-)-R-enantiomer serum levels. The (+)-S-enantiomer was more rapidly eliminated (oral clearance, Cl = 1.1 +/- 0.3 L/h) than its (-)-R-antipode (Cl = 0.7 +/- 0.2 L/h). Therefore, the mean steady/state levels of (-)/R/enantiomer (13.5 +/- 3.8 mg/L) exceeded those of its (+)-S-enantiomer (7.8 +/- 1.8 mg/L). Furthermore, half-life (t1/2) was significantly shorter for (+)-S-INDB (t1/2 = 4.5 +/- 1.2 h as compared to (-)-R-INDB (t1/2 = 7.4 +/- 2.4 h). However, no significant differences were observed in the respective Vd values. The bleeding time of patients was not significantly extended. The above pharmacokinetic data provide a rationale for potential future replacement of INDB racemic tablets with tablets of its (+)-S-enantiomer.  相似文献   
270.
A series of novel or known water-soluble derivatives of chiral gossypol were synthesized and screened in vitro for their anti-HIV-1 activity. (?)-gossypol derivative was more active against HIV-1 than the corresponding (+)-gossypol derivative, respectively. Among these derivatives, d-glucosamine derivative of (?)-gossypol, oligopeptide derivative of (?)-gossypol and taurine derivative of (?)-gossypol, such as compounds 1a, 3a and 14a, showed significant inhibitory activities against HIV-1 replication, HIV-1 mediated cell-cell fusion and HIV gp41 6-helix bundle formation as some amino acid derivatives of (?)-gossypol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号