首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5052篇
  免费   495篇
  国内免费   680篇
  6227篇
  2024年   23篇
  2023年   145篇
  2022年   171篇
  2021年   245篇
  2020年   252篇
  2019年   264篇
  2018年   249篇
  2017年   204篇
  2016年   214篇
  2015年   219篇
  2014年   308篇
  2013年   418篇
  2012年   251篇
  2011年   285篇
  2010年   210篇
  2009年   236篇
  2008年   251篇
  2007年   318篇
  2006年   263篇
  2005年   224篇
  2004年   188篇
  2003年   155篇
  2002年   137篇
  2001年   94篇
  2000年   104篇
  1999年   90篇
  1998年   68篇
  1997年   65篇
  1996年   50篇
  1995年   52篇
  1994年   46篇
  1993年   36篇
  1992年   34篇
  1991年   33篇
  1990年   34篇
  1989年   26篇
  1988年   21篇
  1987年   23篇
  1986年   17篇
  1985年   29篇
  1984年   23篇
  1983年   27篇
  1982年   30篇
  1981年   19篇
  1980年   13篇
  1979年   17篇
  1978年   15篇
  1977年   8篇
  1976年   7篇
  1974年   5篇
排序方式: 共有6227条查询结果,搜索用时 15 毫秒
81.
BackgroundThe twenty first century can be called the genomic era referring to the rapid development of genetics, and the beginning of genomic medicine. An initial step towards genomic medicine is to evaluate the knowledge and attitude towards genetic testing among different populations. The aims of this study were to assess the genetic knowledge and attitude towards genetic testing among the Jordanian population and patients with immune diseases. In addition, we evaluated the association between knowledge, attitude and several demographic factors of the population.MethodsThis study was performed using an online questionnaire that was distributed to respondents from different regions of Jordan.ResultsA total of 1149 participants were recruited from the Jordanian population. Overall factual genetic knowledge of the participants was good (65.4%), with education level, working or studying in a health-related field and household average monthly income being significant predictors of factual knowledge scores (P = 0.03, P < 0.001 and P < 0.001, respectively). However, factual knowledge results revealed that scores of questions related to diseases were significantly higher than scores of gene-related scientific facts (P < 0.01). Participants of our study reported to have low perceived knowledge on medical uses (39.5%) and social consequences (23.9%) of genetic testing. Regarding the participants’ attitudes, favorable attitudes towards genetic testing were prevailing (91.5%). Favorable attitudes were more prominent among higher educated participants, and participants with higher scores of factual knowledge.ConclusionDespite the fact that our Jordanian-based study revealed a good level of genetic knowledge as well as a favorable attitude towards genetic testing, we realized an imbalance of knowledge between gene-related scientific facts and disease-related concepts as well as between factual and perceived genetic knowledge, which indicates the necessity of increasing the awareness about genetic testing in order to ensure that individuals can take informed decisions that help in the employment of personalized medicine.  相似文献   
82.
With the development of genomics, the update of modern imaging technology and the advent of artificial intelligence and big data, the surgical treatment of gastric cancer has gradually stepped into precision medicine. Precision surgery treatment of gastric cancer is based on accurate molecular typing and staging using modern molecular diagnostic technology and imaging, and the formulation of precise and individualized surgical treatment plans, with the concept of minimally invasive and accelerated rehabilitation surgery running through it. For intermediate-stage gastric cancer, we have adopted a comprehensive treatment approach including traditional radiotherapy and chemotherapy, targeted therapy and immunotherapy. Utilize artificial intelligence and big data technology to improve the standardization and interconnectivity of specialty data and realize the transformation of evidence-based medicine. Promoting the standardization, standardization and individualization of gastric cancer surgical treatment, providing patients with precise diagnosis and treatment, and further improving patients'' prognosis are the opportunities and challenges in the development of gastric cancer surgery.  相似文献   
83.
Y-SNPs Haplotype Diversity in Four Chinese Cattle Breeds   总被引:1,自引:0,他引:1  
To investigate the genetic diversity of Chinese cattle, 96 male samples of 4 Chinese native cattle breeds were investigated using 5 single nucleotide polymorphisms specific to the bovine Y chromosome. Two previously described haplotypes (taurine Y2 and indicine Y3) were detected in 74 and 22 animals, respectively. The haplotype frequencies varied amongst the four native breeds. The taurine Y2 haplotype dominated in the Qinchuan, Dabieshan, and Yunba breeds. However, the indicine Y3 haplotype occurred in high frequency in the Enshi breed. Among the four native breeds, Yunba had the highest haplotype diversity (0.4330 ± 0.0750), followed by Qinchuan (0.2899 ± 0.1028) and Enshi (0.2222 ± 0.1662), Dabieshan was the least differentiated (0.1079 ± 0.0680). Compared with some foreign cattle breeds, the low level of haplotype diversity was detected in our breeds (0.2633 ± 0.1030).  相似文献   
84.
Bone defects create stress concentrations which can cause fracture under impact or cyclic loading. Defects are often repaired by filling them with a bone graft material; this will reduce the stress concentration, but not completely, because these materials have lower stiffness than bone. The fracture risk decreases over time as the graft material is replaced by living bone. Many new bone graft materials are being developed, using tissue engineering and other techniques, but currently there is no rational way to compare these materials and predict their effectiveness in repairing a given defect. This paper describes, for the first time, a theoretical model which can be used to predict failure by brittle fracture or fatigue, initiating at the defect. Preliminary results are presented, concentrating on the prediction of stress fracture during the crucial post-operative period. It is shown that the likelihood of fracture is strongly influenced by the shape of the defect as well as its size, and also by the level of post-operative exercise. The most important finding is that bone graft materials can be successful in preventing fracture even when their mechanical properties are greatly inferior to those of bone. Future uses of this technique include pre-clinical assessment of bone replacement materials and pre-operative planning in orthopaedic surgery.  相似文献   
85.
In 2007, the Chinese State Food and Drug Administration (SFDA) implemented a management system for lot release of all plasma-derived products. Since then, there have been only a few systematic studies of the blood supply, which is a concern when considering the small amount of plasma collected per capita (approximately 3 L/1000 people). As a result, there may be a threat to the safety of the available blood supply. In this study, we examined the characteristics of the supply of Chinese plasma-derived products. We investigated the reports of lot-released biological products derived from all 8 national or regional regulatory authorities in China from 2007 to 2011. The market supply characteristics of Chinese plasma-derived products were analyzed by reviewing the changes in supply varieties, the batches of lot-released plasma-derived products and the actual supply. As a result, the national regulatory authorities can more accurately develop a specific understanding of the production and quality management information provided by Chinese plasma product manufacturers. The implementation of the lot release system further ensures the clinical validity of the plasma-derived products in China and improves the safety of using plasma-derived products. This work provides an assessment of the future Chinese market supply of plasma-derived products and can function as a theoretical basis for the establishment of hemovigilance.  相似文献   
86.
Oncoproteomics is the term used to describe the application of proteomic technologies in oncology and parallels the related field of oncogenomics. It is now contributing to the development of personalized management of cancer. Proteomic technologies are used for the identification of biomarkers in cancer, which will facilitate the integration of diagnosis and therapy of cancer. Molecular diagnostics, laser capture microdissection and protein biochips are among the technologies that are having an important impact on oncoproteomics. The discovery of protein patterns developed by the US Food and Drug Administration/National Cancer Institute Clinical Proteomics Program is capable of distinguishing cancer and disease-free states with high sensitivity and specificity and will also facilitate the development of personalized therapy of cancer. Examples of application are given for breast and prostate cancer and a selection of companies and their collaborations that are developing application of proteomics to personalized treatment of cancer are discussed. Continued refinement of techniques and methods to determine the abundance and status of proteins in vivo holds great promise for the future study of normal cells and the pathology of associated neoplasms. Personalized cancer therapy is expected to be in the clinic by the end of the first decade of the 21st century.  相似文献   
87.
Phosphatidylserine (PS) and phosphatidylethanolamine (PE) are metabolically related membrane aminophospholipids. In mammalian cells, PS is required for targeting and function of several intracellular signaling proteins. Moreover, PS is asymmetrically distributed in the plasma membrane. Although PS is highly enriched in the cytoplasmic leaflet of plasma membranes, PS exposure on the cell surface initiates blood clotting and removal of apoptotic cells. PS is synthesized in mammalian cells by two distinct PS synthases that exchange serine for choline or ethanolamine in phosphatidylcholine (PC) or PE, respectively. Targeted disruption of each PS synthase individually in mice demonstrated that neither enzyme is required for viability whereas elimination of both synthases was embryonic lethal. Thus, mammalian cells require a threshold amount of PS. PE is synthesized in mammalian cells by four different pathways, the quantitatively most important of which are the CDP-ethanolamine pathway that produces PE in the ER, and PS decarboxylation that occurs in mitochondria. PS is made in ER membranes and is imported into mitochondria for decarboxylation to PE via a domain of the ER [mitochondria-associated membranes (MAM)] that transiently associates with mitochondria. Elimination of PS decarboxylase in mice caused mitochondrial defects and embryonic lethality. Global elimination of the CDP-ethanolamine pathway was also incompatible with mouse survival. Thus, PE made by each of these pathways has independent and necessary functions. In mammals PE is a substrate for methylation to PC in the liver, a substrate for anandamide synthesis, and supplies ethanolamine for glycosylphosphatidylinositol anchors of cell-surface signaling proteins. Thus, PS and PE participate in many previously unanticipated facets of mammalian cell biology. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   
88.
Annual production of crop residues has reached nearly 4 billion metric tons globally. Retention of this large amount of residues on agricultural land can be beneficial to soil C sequestration. Such potential impacts, however, may be offset if residue retention substantially increases soil emissions of N2O, a potent greenhouse gas and ozone depletion substance. Residue effects on soil N2O emissions have gained considerable attention since early 1990s; yet, it is still a great challenge to predict the magnitude and direction of soil N2O emissions following residue amendment. Here, we used a meta‐analysis to assess residue impacts on soil N2O emissions in relation to soil and residue attributes, i.e., soil pH, soil texture, soil water content, residue C and N input, and residue C : N ratio. Residue effects were negatively associated with C : N ratios, but generally residue amendment could not reduce soil N2O emissions, even for C : N ratios well above ca. 30, the threshold for net N immobilization. Residue effects were also comparable to, if not greater than, those of synthetic N fertilizers. In addition, residue effects on soil N2O emissions were positively related to the amounts of residue C input as well as residue effects on soil CO2 respiration. Furthermore, most significant and stimulatory effects occurred at 60–90% soil water‐filled pore space and soil pH 7.1–7.8. Stimulatory effects were also present for all soil textures except sand or clay content ≤10%. However, inhibitory effects were found for soils with >90% water‐filled pore space. Altogether, our meta‐analysis suggests that crop residues played roles beyond N supply for N2O production. Perhaps, by stimulating microbial respiration, crop residues enhanced oxygen depletion and therefore promoted anaerobic conditions for denitrification and N2O production. Our meta‐analysis highlights the necessity to connect the quantity and quality of crop residues with soil properties for predicting soil N2O emissions.  相似文献   
89.
This article explores commercial, academic, and national initiatives aimed at using sequencing technologies to generate “actionable” genomic results that can be applied to the clinical management of oncology patients. We argue that the term “actionable” is not merely a buzzword, but signals the emergence of a distinctive sociotechnical regime of genomic medicine in oncology. Unlike other regimes of genomic medicine that are organized around assessing and managing inherited risk for developing cancer (e.g. BRCA testing), actionable regimes aim to generate predictive relationships between genetic information and drug therapies, thereby generating new kinds of clinical actions. We explore how these genomic results are made actionable by articulating them with existing clinical routines, clinical trials, regulatory regimes, and health care systems; and in turn, how clinical sequencing programs have begun to reconfigure knowledge and practices in oncology. Actionability regimes confirm the emergence of bio-clinical decision-making in oncology, whereby the articulation of molecular hypotheses and experimental therapeutics become central to patient care.  相似文献   
90.
The study's objective is to survey the attitudes of Chinese people living in Hong Kong toward genomic science and technology (GST) and their ethical and social implications. Using a 24-item questionnaire, 877 Cantonese-speaking residents between age 18 and 64 with minimum high school education are interviewed by telephone. Multiple regression analysis identifies education level as the most important demographic variable. Overall, respondents have mild agreement with genetic determinism and the use of GST for disease prevention but not for non-therapeutic genetic enhancement and production of “genetically modified” crops or meat. Respondents strongly believe that GST tampers with nature and resources should be used to solve other healthcare problems first. Respondents also show little concern that personal genetic information may be abused by their employers or schools and have only a minimal willingness to share personal genetic information with their family members.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号