首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   186篇
  免费   8篇
  国内免费   25篇
  2024年   1篇
  2022年   6篇
  2021年   4篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   7篇
  2016年   6篇
  2015年   4篇
  2014年   5篇
  2013年   11篇
  2012年   8篇
  2011年   6篇
  2010年   4篇
  2009年   9篇
  2008年   7篇
  2007年   5篇
  2006年   8篇
  2005年   7篇
  2004年   5篇
  2003年   5篇
  2002年   6篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   5篇
  1997年   11篇
  1996年   11篇
  1995年   5篇
  1994年   8篇
  1993年   4篇
  1992年   7篇
  1991年   5篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   5篇
  1983年   2篇
  1981年   1篇
  1977年   3篇
排序方式: 共有219条查询结果,搜索用时 93 毫秒
171.
藜对干旱胁迫的生理生化反应   总被引:37,自引:0,他引:37  
孙存华  李扬  贺鸿雁  孙东旭  杜伟  郑曦 《生态学报》2005,25(10):2556-2561
干旱是植物最易遭受的胁迫之一,每年由于干旱胁迫给农业造成损失几乎相当于其他所有环境因子胁迫所造成的损失的总和。通过人工控制水分模拟干旱来研究生长期的藜对干旱胁迫的生理生化反应,以期望为干旱农业的高效生产提供理论依据。以盆栽的藜为材料,用控制浇水的方法分对照、轻度胁迫、中度胁迫、重度胁迫4个组,研究了不同程度干旱胁迫对藜叶片的水分状况、渗透调节物质、活性氧代谢以及内生保护系统的影响。结果表明:在干旱胁迫下,藜叶片相对含水量(RW C)、自由水含量(FW C)下降,束缚水含量(BW C)上升;可溶性糖、脯氨酸、K 、C a2 含量增加,表现出藜对适度干旱有一定的适应性。但重度干旱胁迫,O2.产生速率和丙二醛(M DA)含量显著提高,导致膜损伤,质膜透性上升;超氧化物歧化酶(SOD)、过氧化物酶(POD)活性先上升,后下降;抗坏血酸(A SA)含量降低。过分干旱胁迫对藜会造成一定伤害。  相似文献   
172.
土荆芥挥发油对蚕豆根尖细胞的化感潜力   总被引:5,自引:0,他引:5  
胡琬君  马丹炜  王亚男  张红  李群 《生态学报》2011,31(13):3684-3690
化感作用是外来植物成功入侵的机制之一。本研究以蚕豆根尖为材料,采用DNA Ladder分析技术和蚕豆根尖微核技术,分析了入侵植物土荆芥挥发油经土壤载体诱导的细胞凋亡以及对细胞的遗传损伤。结果表明:(1)经挥发油处理24 h和48 h,低剂量(<5 μL)挥发油对蚕豆根的生长与根尖细胞有丝分裂具有显著的促进作用,但随着处理剂量增大(>5 μL)和处理时间延长,根的生长与细胞有丝分裂过程明显受到抑制。(2)挥发油具有诱导染色体畸变的效应,根尖细胞微核率随处理剂量增加和时间延长而增大,但当挥发油剂量大于15 μL,这种诱导效应降低。(3)通过DNA Ladder分析,经挥发油处理后根尖细胞发生了凋亡,其中24 h处理组DNA未发生特异性降解,当剂量大于15 μL处理48 h和剂量大于10 μL处理72 h后,DNA开始发生特异性降解,形成DNA Ladder,表明随着挥发油剂量增大和作用时间延长,细胞凋亡过程加剧。本研究结果表明土荆芥释放的挥发性化感物质能以土壤为载体对根细胞产生影响。  相似文献   
173.
为了探讨入侵植物土荆芥(Chenopodium ambrosioides L.)化感作用如何干扰受体植物的防御功能,以蚕豆(Vicia faba L.)为受体,研究了土荆芥挥发油及其主要成分ρ-对伞花素和α-萜品烯对根边缘细胞活性及其胞外诱捕网厚度的影响,并测定了细胞内信号分子活性氧(Reactive oxygen species, ROS)和NO水平的变化。结果表明:在土荆芥挥发油、ρ-对伞花素和α-萜品烯作用下,蚕豆根边缘细胞粘胶层厚度增加,细胞活性下降,而ROS和NO水平升高,且表现为浓度依赖效应,细胞死亡率、ROS水平和NO水平三者之间存在着显著的正相关(P<0.05)。ROS清除剂抗坏血酸(AsA)、硝酸还原酶抑制剂(NaN3)和泛Caspase抑制剂Z-VAD-FMK均可有效缓解挥发性物质的细胞致死效应,表明ROS和NO诱导根边缘细胞发生了Caspase依赖性细胞凋亡。上述结果表明土荆芥挥发性化感物质诱导蚕豆根边缘细胞内NO和ROS的水平上升,二者协同作用导致细胞凋亡,引起受体防御功能障碍,从而抑制了植物根系的生长。  相似文献   
174.
175.
Increased botanical diversity can lead to suppression of insect pests. One route by which botanical diversity is increased in crops is through the occurrence of weeds, which increasingly interact with crop plants as organic production expands. However, the mechanisms by which this might affect insect herbivores are poorly understood. This study examined whether volatile chemical interactions between weeds and barley, Hordeum vulgare L. (Poaceae), can affect plant acceptance by the bird cherry oat aphid, Rhopalosiphum padi L. (Hemiptera: Aphididae). In laboratory experiments, exposure of barley to volatiles from Chenopodium album L. (Amaranthaceae) and Solanum nigrum L. (Solanaceae) resulted in significantly reduced aphid acceptance compared with unexposed plants. In a series of field experiments in which the occurrence of weeds was manipulated in plots of barley, significantly lower aphid acceptance was recorded on barley plants grown in plots with C. album compared with barley plants in weedless plots. The results indicate that interaction between weeds and barley can affect aphid–plant interactions in the field as well as in the laboratory and provide further evidence that the effects of chemical interactions between visibly undamaged plants can extend to higher trophic levels.  相似文献   
176.
Thermal stability of antioxidant defense enzymes was investigated in leaf and inflorescence of heat adaptive weed Chenopodium album. Leaf samples were taken at early and late seedling stage in December (LD, 20 °C/4 °C) and March (LM, 31 °C/14 °C). Young inflorescence (INF) was sampled at flowering in April (40 °C/21 °C). LD, LM and INF crude protein extracts were subjected to elevated temperatures (5 to 100 °C) for 30′. Superoxide dismutase (SOD) was the most heat stable enzyme followed by Ascorbate peroxidase (APX). Two heat stable SOD isozymes were visible on native-PAGE at 100 °C in both leaf and INF. Some heat stable APX isozymes were more abundant in INF than leaf. Thermostability of catalase (CAT) increased with age and increasing ambient temperatures in leaves. CAT activity was observed up to 60 °C in leaves and INF while peroxidase (POX) retained activity up to 100 °C in INF due to one thermostable isozyme. Glutathione reductase (GR), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and monodehydroascorbate reductase (MDHAR) showed activity up to 70 °C in both leaves and INF. DHAR activity was stable up to 60 °C while GR and MDHAR declined sharply after 40 °C. Constitutive heat stable isozymes of SOD and APX in leaves and INF may contribute towards heat tolerance in C. album.  相似文献   
177.
Cytokinins in photoperiodic induction of flowering in Chenopodium species   总被引:1,自引:0,他引:1  
Changes in cytokinin (zeatin – Z, zeatin riboside – ZR, isopentenyladenine – iP, isopentenyladenosine – iPA) levels were determined under light regimes inductive and non-inductive for flowering in leaves, stems, roots and apical parts of short-day Chenopodium rubrum and long-day Chenopodium murale. In leaves. stems and roots of both plant species the level of cytokinins (in C. rubrum of Z and ZR, in C. murale of Z. ZR, iP and iPA) decreased by about 50% during the dark period and increased again during the subsequent light period, No significant changes in cytokinin levels were observed in continuous light. In apical parts of C. rubrum cytokinin level (Z, ZR, iP) was dramatically increased (by 400–500%) at the end of the dark period and decreased to about the original value during the following light period, while no changes were observed in continuous light. In apical parts of C. murale the level of cytokinins doubled during floral induction consisting of 10 days of continuous light. A red (R) break (15 min at the 6th h of darkness), which prevents flowering in C. rubrum , has no significant effect on cytokinin levels in leaves at the end of darkness. Cytokinin levels increased 1 h after R and decreased again rapidly. On the other hand, the increase of cytokinin level in the apical parts of C. rubrum was largely prevented by the R break. These effects of R on cytokinin levels were not reverted by far-red (FR), while the effect on flowering was reverted. It may be concluded that there is no correlation between changes in cytokinin levels in leaves. Stems and roots and photoperiodic flower induction, as both species, representing different photoperiodic types, showed similar changes under the same light regime. The increase of cytokinin levels in apical parts of both photoperiodic species during floral induction suggests a role (increased cell division and branching) for cytokinins in apex evocation.  相似文献   
178.
In recent years, the increase in sika deer populations has had a significant impact on forest ecosystems. Many studies have reported that this increase has led to the dominance of plants unpalatable to the deer; however, few studies have investigated the effects of this dominance on the specialist sawfly species that feed on the unpalatable plants. We observed the mass emergence of Aglaostigma amoorensis (Hymenoptera: Tenthredinidae), a rare specialist sawfly of the false helleborine Veratrum plants unpalatable to sika deer, in areas under severe feeding pressure by sika deer. An exponential increase in the number of emergent A. amoorensis adults was observed to occur with an increase in Veratrum album patch sizes. In addition, the increase in the A. amoorensis density had a negative effect on reproductive success of V. album. Our findings suggest that the relative abundance of specialist sawfly to the host‐plant abundance has changed for successive years after sika deer irruption.  相似文献   
179.
选用盐碱地灰绿藜(Chenopodium glaucum L.)幼嫩花序为外植体,建立了快速而高效的离体组织培养体系。在附加1.0 mg/L 6-BA和0.4 mg/L IBA的MS培养基上培养35 d可诱导出不定芽,诱导频率达到66.7%;不定芽在此培养基上可快速扩增和长期继代培养。不定芽转至1/2 MS NAA 0.2 mg/L培养基中培养2~3周,生根形成完整植株。  相似文献   
180.
Elevated CO2 enhances carbon uptake of a plant stand, but the magnitude of the increase varies among growth stages. We studied the relative contribution of structural and physiological factors to the CO2 effect on the carbon balance during stand development. Stands of an annual herb Chenopodium album were established in open-top chambers at ambient and elevated CO2 concentrations (370 and 700 μmol mol−1). Plant biomass growth, canopy structural traits (leaf area, leaf nitrogen distribution, and light gradient in the canopy), and physiological characteristics (leaf photosynthesis and respiration of organs) were studied through the growing season. CO2 exchange of the stand was estimated with a canopy photosynthesis model. Rates of light-saturated photosynthesis and dark respiration of leaves as related with nitrogen content per unit leaf area and time-dependent reduction in specific respiration rates of stems and roots were incorporated into the model. Daily canopy carbon balance, calculated as an integration of leaf photosynthesis minus stem and root respiration, well explained biomass growth determined by harvests (r 2 = 0.98). The increase of canopy photosynthesis with elevated CO2 was 80% at an early stage and decreased to 55% at flowering. Sensitivity analyses suggested that an alteration in leaf photosynthetic traits enhanced canopy photosynthesis by 40–60% throughout the experiment period, whereas altered canopy structure contributed to the increase at the early stage only. Thus, both physiological and structural factors are involved in the increase of carbon balance and growth rate of C. album stands at elevated CO2. However, their contributions were not constant, but changed with stand development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号