首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4545篇
  免费   140篇
  国内免费   303篇
  2024年   4篇
  2023年   43篇
  2022年   38篇
  2021年   65篇
  2020年   57篇
  2019年   145篇
  2018年   160篇
  2017年   178篇
  2016年   145篇
  2015年   96篇
  2014年   380篇
  2013年   516篇
  2012年   184篇
  2011年   242篇
  2010年   182篇
  2009年   228篇
  2008年   237篇
  2007年   232篇
  2006年   210篇
  2005年   190篇
  2004年   154篇
  2003年   153篇
  2002年   131篇
  2001年   85篇
  2000年   85篇
  1999年   86篇
  1998年   94篇
  1997年   66篇
  1996年   93篇
  1995年   71篇
  1994年   64篇
  1993年   55篇
  1992年   55篇
  1991年   50篇
  1990年   37篇
  1989年   33篇
  1988年   19篇
  1987年   30篇
  1986年   16篇
  1985年   13篇
  1984年   13篇
  1983年   10篇
  1982年   16篇
  1981年   7篇
  1980年   5篇
  1979年   8篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1972年   2篇
排序方式: 共有4988条查询结果,搜索用时 15 毫秒
131.
132.
The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.  相似文献   
133.
134.
Micro-finite element (micro-FE) analysis became a standard tool for the evaluation of trabecular bone mechanical properties. The accuracy of micro-FE models for linear analyses is well established. However, the accuracy of recently developed nonlinear micro-FE models for simulations of trabecular bone failure is not known. In this study, a trabecular bone specimen was compressed beyond the apparent yield point. The experiment was simulated using different micro-FE meshes with different element sizes and types, and material models based on cortical bone. The results from the simulations were compared with experimental results to study the effects of the different element and material models. It was found that a decrease in element size from 80 to 40 μm had little effect on predicted post-yield behaviour. Element type and material model had significant effects. Nevertheless, none of the established material models for cortical bone were able to predict the typical descent in the load-displacement curve seen during compression of trabecular bone.  相似文献   
135.
Biodynamics and injury potential of operators in stand-up rider lift truck accidents have been investigated with a special focus on head injury. An anthropomorphic test device (ATD) model was used as an operator surrogate in computer simulations of off-the-dock (OTD) and tip-over (TO) accidents. The biomechanical model representing the ATD was developed based on rigid body segments, and then combined with a rigid body truck model in the accident simulations. The operator compartment of the truck model was enclosed with a rear door. The computed kinematics are in agreement with the results of previous experimental testing. A 2D finite element model of the head was created to compute head impact decelerations in the sagittal plane. Values of the head injury criterion for the TO cases were computed from the model and shown to compare favourably with experimental values. The results advance the state of knowledge concerning injury potential in TO and OTD accidents and simulation models for such accidents.  相似文献   
136.
Today the most popular approach for the prevention of the restenosis consists in the use of the drug eluting stents. The stent acts as a source of drug, from a coating or from a reservoir, which is transported into and through the artery wall. In this study, the behaviour of a model of a hydrophilic drug (heparin) released from a coronary stent into the arterial wall is investigated. The presence of the specific binding site action is modelled using a reversible chemical reaction that explains the prolonged presence of drug in the vascular tissue. An axi-symmetric model of a single stent strut is considered. First an advection–diffusion problem is solved using the finite element method. Then a simplified model with diffusion only in the arterial wall is compared with: (i) a model including the presence of reversible binding sites in the vascular wall and (ii) a model featuring a drug reservoir made of a degradable polymeric matrix. The results show that the inclusion of a reversible binding for the drug leads to delayed release curves and that the polymer erosion affects the drug release showing a quicker elution of the drug from the stent.  相似文献   
137.
We propose a class of microstructurally informed models for the linear elastic mechanical behaviour of cross-linked polymer networks such as the actin cytoskeleton. Salient features of the models include the possibility to represent anisotropic mechanical behaviour resulting from anisotropic filament distributions, and a power law scaling of the mechanical properties with the filament density. Mechanical models within the class are parameterized by seven different constants. We demonstrate a procedure for determining these constants using finite element models of three-dimensional actin networks. Actin filaments and cross-links were modelled as elastic rods, and the networks were constructed at physiological volume fractions and at the scale of an image voxel. We show the performance of the model in estimating the mechanical behaviour of the networks over a wide range of filament densities and degrees of anisotropy.  相似文献   
138.
Abstract

Total Hip Arthroplasty requires pre-surgical evaluation between un-cemented and cemented prostheses. A Patient with intra-operative periprosthetic fracture and another with a successful outcome were recruited, and their finite element models were constructed by processing CT data, assuming elastic-plastic behavior of the bone as function of the local density. To resemble the insertion of the prosthesis into the femur, a fictitious thermal dilatation is applied to the broach volume. Strain-based fracture risk factor is estimated, depicting results in terms of the total mechanical strain expressed using a simple “traffic lights” color code to provide immediate, concise, and intelligible pre-operative information to surgeons.  相似文献   
139.
Objective: The objective of this study was to fabricate a successful implant for temporomandibular joint (TMJ) disorder patients who could not be treated through conventional surgeries.

Methods: A custom-made implant was fabricated using rapid prototyping (RP) for the TMJ surgery. The stability of the metallic implant was validated using a finite element analysis.

Results: The results of finite elements were stable and the design of the TMJ implant was suitable as per the patient's need. The customised implant was made using a fused deposition modelling method of RP and a vertical machining centre. The implant has provided normal jaw function for over 2 years since surgery.

Conclusions: The approach utilised will be helpful in providing successful treatment to the deformed mandible and the mandible joints. This method allows to customise and to accurately fabricatie the implant. Advantages of this approach are that the physical model of the implant was tested for stability before the implantation, the surgeon can plan and rehearse the surgery in advance, it is a less invasive and less time-consuming surgical procedure.  相似文献   
140.
In order to reduce the socio-economic burden induced by osteoporotic hip fractures, finite element models have been evaluated as an additional diagnostic tool for fracture prediction. For a future clinical application, the challenge is to reach the best compromise between model relevance and computing time. Based on this consideration, the current study focused on the development and validation of a subject-specific FE-model using an original parameterised generic model and a specific personalization method. A total of 39 human femurs were tested to failure under a quasi-static compression in stance configuration. The corresponding FE-models were generated and for each specimen the numerical fracture load (F FEM) was compared with the experimental value (F EXP), resulting in a significant correlation (F EXP = 1.006 F FEM with r 2 = 0.87 and SEE = 1220 N, p < 0.05) obtained with a reasonable computing time (30 mn). Further in vivo study should confirm the ability of this FE-model to improve the fracture risk prediction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号