首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   310篇
  免费   14篇
  国内免费   1篇
  325篇
  2022年   7篇
  2021年   8篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   4篇
  2016年   11篇
  2015年   17篇
  2014年   29篇
  2013年   13篇
  2012年   11篇
  2011年   32篇
  2010年   17篇
  2009年   16篇
  2008年   25篇
  2007年   15篇
  2006年   23篇
  2005年   17篇
  2004年   25篇
  2003年   16篇
  2002年   9篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
排序方式: 共有325条查询结果,搜索用时 0 毫秒
91.
The transmembrane chemokine CX3CL1 is expressed on the endothelial surface and promotes leukocyte adhesion and transmigration by receptor interaction via its extracellular chemokine domain. Since little is known about its intracellular C-terminus, we examined the consequences of C-terminal truncation on cellular distribution, proteolytic shedding and function of murine CX3CL1. Full length murine CX3CL1 was expressed and shed by the metalloproteinase ADAM10 as described for human CX3CL1. Truncation of murine CX3CL1 led to reduced maturation and impaired trafficking to the surface. Truncation of CX3CL1 also abrogated localization to early endosomal vesicles, but increased shedding from the surface by ADAM10. Once truncated CX3CL1 was expressed on the surface, it mediated cell contact and induced leukocyte transmigration similar as full length CX3CL1. These data suggest that the C-terminus of CX3CL1 carries important determinants for cellular trafficking but not for function of the chemokine during leukocyte recruitment.  相似文献   
92.
Cytokines and chemoattractive cytokines (chemokines) are present in a wide variety of body fluids such as plasma, cerebrospinal fluid, bronchoaveolar fluid, amniotic fluid, synovial fluid, middle ear effusion fluid, and urine. Cytokines can be detected using classical solid-phase sandwich immunoassays such as enzyme-linked immunosorbent assay (ELISA) or with a bead based multiplex immunoassay (MIA). The physical chemical properties of the different body fluids (such as pH and total protein content) differ, which may have an impact on the outcome of the cytokine assay. Both ELISA as well as MIA cytokine detection systems are constructed by sandwiching the protein of interest between a capture and reporter antibody. When the biological sample contains heterophilic antibodies (such as in patients with auto-immune diseases), these non-specific antibodies can cause false positive results. During pathological conditions, cytokines may be found over a wide concentration range; likewise have to cover this dynamic range in a similar fashion. The correct (statistical) analysis of standard curves and (multiplexed) data are critical for proper interpretation. Classical ELISA based cytokine assays are robust, easy to use and very well suited for measurement of single cytokines. Due to an increased interest in the integral approach to understand biological processes (the omics era), multiplex immunoassays for detection of cytokines and the interpretation of these assays are gaining popularity.  相似文献   
93.
The objective of this study was to elucidate the role of the cellular proteasome on endotoxin-mediated activation of the macrophage. To study this role, THP-1 cells were stimulated with lipopolysaccharide (LPS) with selective cells being pretreated with the proteasome inhibitor, lactacystin or MG-132. LPS stimulation led to the phosphorylation and degradation of IRAK, followed by activation of JNK/SAPK, ERK 1/2, and p38. Subsequently, LPS induced the degradation of IkappaB, and the nuclear activation of NF-kappaB and AP-1. Activation of these pathways was associated with the production of IL-6, IL-8, IL-10, and TNF-alpha. Proteasome inhibition with either lactacystin or MG-132 attenuated LPS-induced IRAK degradation, and enhanced activation of JNK/SAPK, ERK 1/2, and p38. Proteasome inhibition, also, led to increased LPS-induced AP-1 activation, and attenuated LPS-induced IkappaB degradation resulting in abolished NF-kappaB activation. Proteasome inhibition led to significant modulation of LPS-induced cytokine production; increased IL-10, no change in IL-6, and decreased IL-8, and TNF-alpha. Thus, this study demonstrates that cellular proteasome is critical to regulation of LPS-induced signaling within the macrophage, and inhibition of the proteasome results in a conversion to an anti-inflammatory phenotype.  相似文献   
94.
Monocyte adhesion to the arterial endothelium and subsequent migration into the intima are central events in the pathogenesis of atherosclerosis. Previous experimental models have shown that chemokines can enhance monocyte–endothelial adhesion by activating monocyte integrins. Our study assesses the role of chemokines IL-8, MCP-1 and GRO-α, together with their monocyte receptors CCR2 and CXCR2 in monocyte adhesion to human atherosclerotic plaques. In an adhesion assay, a suspension of monocytic U937 cells was incubated with human atherosclerotic artery sections and the levels of endothelial adhesion were quantified. Adhesion performed in the presence of a monoclonal antibody to a chemokine, chemokine receptor or of an isotype matched control immunoglobulin, shows that antibodies to all chemokines tested, as well as their receptors, inhibit adhesion compared to the control immunoglobulins. Immunohistochemistry demonstrated the expression of MCP-1, GRO-α and their receptors in the endothelial cells and intima of all atherosclerotic lesions. These results suggest that all these chemokines and their receptors can play a role in the adhesion of monocytes to human atherosclerotic plaques. Furthermore, they suggest that these chemokine interactions provide potential targets for the therapy of atherosclerosis.  相似文献   
95.
96.
The human cytomegalovirus-encoded G protein-coupled receptor homologue US28 binds inflammatory chemokines and sequesters them from the environment of infected cells. Low surface deposition and endocytosis are dependent on constitutive C-terminal phosphorylation, suggesting a requirement for beta-arrestin binding in receptor internalization. In this report, a US28-dependent redistribution of beta-arrestin into vesicular structures occurred, although internalization of US28 was independent of beta-arrestin. Internalization of US28 was dynamin-dependent, and US28 partially partitioned into the detergent-resistant membrane fraction. Endocytosis was diminished by cholesterol depletion, yet sucrose inhibition was even stronger. The relevance of the clathrin-coated pit pathway was supported by colocalization of beta(2)-adaptin and US28 in endocytic compartments. Exchange of the C-terminal dileucine endocytosis motif inhibited rapid endocytosis, indicating a direct interaction of US28 with the AP-2 adaptor complex. We suggest that the arrestin-independent, dynamin-dependent internalization of US28 reveals a differential sorting of beta-arrestins and the virally encoded chemokine receptor homologue.  相似文献   
97.
Multiple CC chemokines bind to CCR1, which plays important roles in immune and inflammatory responses. To search for proteins involved in the CCR1 signaling pathway, we screened a yeast two-hybrid library using the cytoplasmic tail of CCR1 as the bait. One of the positive clones contained an open reading frame of 456bp, of which the nucleotide sequence was identical to that of proteolipid protein 2 (PLP2), also known as protein A4. Mammalian two-hybrid and coimmunoprecipitation analyses demonstrated the association of PLP2/A4 with CCR1. Indirect immunofluorescence analysis revealed that PLP2/A4 was predominantly located in plasma membrane and colocalized with CCR1 in transfected human HEK293 cells. In addition, focal staining of CCR1 appeared on the periphery of the membrane upon short exposure to Leukotactin-1(Lkn-1)/CCL15, a CCR1 agonist, and was costained with PLP2/A4 on the focal regions. PLP2/A4 mRNAs were detected in various cells such as U-937, HL-60, HEK293, and HOS cells. Overexpression of PLP2/A4 stimulated a twofold increase in the agonist-induced migration of HOS/CCR1 cells, implicating a functional role for PLP2/A4 in the chemotactic processes via CCR1.  相似文献   
98.
Roxithromycin (RXM), an anti-bacterial macrolide, has various immunomodulatory activities. To investigate the ability of RXM to downregulate skin-infiltration of T-lymphocytes, we examined the effects of RXM on keratinocyte production of chemokines and T cell expression of chemokine receptors. Normal human and HaCaT keratinocytes were cultured with RXM and stimulants. RXM at 1 or 10 microM significantly suppressed the production/expression of Th2 chemokines MDC and TARC in these keratinocytes, but the production of IP-10 was not affected. The effect of RXM on T-cell expression of the corresponding chemokine receptors was also tested in Th2-rich peripheral blood lymphocytes. The IL-2-enhanced expression level of Th2 chemokine receptor CCR4 was decreased by RXM at 10 microM, whereas the expression of CXCR3 was unchanged. Thus, RXM downmodulates both the production and receptor expression of Th2 but not Th1 chemokines involved in cutaneous immunity, suggesting its beneficial therapeutic effects on Th2-mediated or allergic skin disorders.  相似文献   
99.
Proteolytic processing is an important regulatory mechanism for chemokines. Matrix metalloproteinases (MMPs), such as gelatinase A/MMP-2 and gelatinase B/MMP-9, are known to process the aminoterminal end of various chemokines, including interleukin-8 (IL-8/CXCL-8) and monocyte chemotactic protein-3 (MCP-3/CXCL-7). In the present study, two proteases, gelatinase B and neutrophil collagenase/MMP-8, are shown for the first time to process the carboxyterminal end of two chemokines, monokine induced by interferon (IFN)-gamma (MIG/CXCL-9) and IFN-inducible protein-10 (IP-10/CXCL-10). Neutrophil collagenase degrades MIG into small fragments and cleaves IP-10 behind positions 71 and 73. Gelatinase B degrades IP-10 and cleaves MIG at three different sites in its extended carboxyterminal region. This results in the formation of MIG(1-94), MIG(1-93), and MIG(1-90). In general, gelatinase B was more efficient than neutrophil collagenase in processing these chemokines. Alignment of the CXC chemokines with the respective cleavage sites by both MMPs identified the ELR motif as a possible determinant for amino terminal cleavage by these MMPs.  相似文献   
100.
Full-length soluble HIV-1 Tat protein has been shown to bind the CXCR4 receptor. Occupancy of CXCR4 by Tat inhibits infection of cells by T-tropic HIV-1. To understand if fragments of the Tat protein may have similar anti-HIV activity, we synthesized Tat peptides and tested their activity in tissue culture. Here, we report a sequence-specific contribution of Tat residues 31-35 to anti-HIV-1 activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号