首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2904篇
  免费   87篇
  国内免费   262篇
  3253篇
  2023年   22篇
  2022年   35篇
  2021年   65篇
  2020年   67篇
  2019年   74篇
  2018年   47篇
  2017年   61篇
  2016年   55篇
  2015年   100篇
  2014年   194篇
  2013年   293篇
  2012年   216篇
  2011年   280篇
  2010年   219篇
  2009年   140篇
  2008年   160篇
  2007年   145篇
  2006年   95篇
  2005年   87篇
  2004年   89篇
  2003年   56篇
  2002年   65篇
  2001年   40篇
  2000年   42篇
  1999年   49篇
  1998年   34篇
  1997年   29篇
  1996年   44篇
  1995年   39篇
  1994年   39篇
  1993年   29篇
  1992年   23篇
  1991年   27篇
  1990年   30篇
  1989年   21篇
  1988年   13篇
  1987年   22篇
  1986年   15篇
  1985年   18篇
  1984年   24篇
  1983年   19篇
  1982年   35篇
  1981年   19篇
  1980年   19篇
  1979年   16篇
  1978年   8篇
  1977年   9篇
  1976年   4篇
  1974年   4篇
  1973年   6篇
排序方式: 共有3253条查询结果,搜索用时 15 毫秒
21.
A purified polysaccharide ACDP-2 was isolated from water extract of the stems of Cistanche deserticola. Chemical and spectroscopic analyses indicated that ACDP-2 is a highly branched arabinogalactan polymer that composes of linked d-galactopyranose and d-glucopyranose, which contains predominantly a branching point at the 6-carbon. The branched side-chains compose of terminal-, 1,5-, and 1,3,5-linked arabinofuranosyl residues. ACDP-2 showed an effect in stimulating the immune response, which when applied onto the cultured mouse lymphocytes induced the cell proliferation in a dose-dependent manner.  相似文献   
22.
壳聚糖的化学改性及其在生物医药领域的应用进展   总被引:1,自引:0,他引:1  
本文综述了近年来壳聚糖的酰化、羧甲基化、接枝、烷基化和交联等化学改性方法及其在生物医用高分子方面的应用进展,总结了壳聚糖改性及其应用过程中存在的问题并对其发展趋势作了预测。  相似文献   
23.
Organically bound phosphorus (P) is a mobile form of phosphorus in many soils and thus its dynamics relevant for the leaching and cycling of this element. Despite its importance, little is known about the chemical composition of dissolved organic P. We studied the concentrations, fluxes, and chemical composition of organic P in forest floor leachates and soil solutions in a Rendzic Leptosol under a 90-year-old European beech (Fagus sylvatica L.) forest over a 27-month period (1997–1999). The chemical composition of organic P was analysed using XAD-8 fractionation and 31P-nuclear magnetic resonance (NMR) spectroscopy. Organic P was the dominant P form in forest floor leachates as well as in porewaters of the mineral soil. The largest concentrations of organic P were observed during summer and peaked (330–400 g dissolved organic P l–1) after rain storms following short dry periods, concurrently with the concentrations of organic carbon (OC). Because of high rainfall, fluxes of organic P (and C) were greatest in autumn although concentrations of organic C and P were lower than in summer. In forest floor leachates, the hydrophilic fraction of dissolved organic matter contained 83 ± 13% of the bulk organic P. In soil solutions from 90 cm depth, organic P was almost exclusively in the hydrophilic fraction. Because of the low retention of the hydrophilic fraction of dissolved organic matter in the mineral soils, concentrations of organic P in soil water remained almost constant with depth. Consequently, organic P contributed > 95% of the total P leached into deeper subsoils. The overall retention of organic P in the weakly developed mineral soils was little and so the average annual fluxes of organic P in subsoils at 90 cm depth (38 mg m–2) comprised 67% of those from the forest floors (57 mg m–2) during the study period. Hence, organic P proved to be mobile in the studied soil. 31P-NMR spectroscopy confirmed the dominance of organic P species in soil water. Signals due to inorganic P occurred only in spectra of samples collected in winter and spring months. Spectra of samples from summer and autumn revealed traces of condensed phosphates. Due to low P contents, identification of organic P species in samples from winter and spring was not always possible. In summer and autumn, monoester and diester phosphates were the dominant organic species and varied little in their relative distributions. The distribution of organic species changed little from forest floor leachates to the subsoil solutions indicating that the composition of P-containing compounds was not influenced by sorptive interactions or biological transformation.  相似文献   
24.
Mammalian sirtuins (SIRT1 through SIRT7) are members of a highly conserved family of NAD+-dependent protein deacetylases that function in metabolism, genome maintenance, and stress responses. Emerging evidence suggests that some sirtuins display substrate specificity toward other acyl groups attached to the lysine ϵ-amine. SIRT6 was recently reported to preferentially hydrolyze long-chain fatty acyl groups over acetyl groups. Here we investigated the catalytic ability of all sirtuins to hydrolyze 13 different acyl groups from histone H3 peptides, ranging in carbon length, saturation, and chemical diversity. We find that long-chain deacylation is a general feature of mammalian sirtuins, that SIRT1 and SIRT2 act as efficient decrotonylases, and that SIRT1, SIRT2, SIRT3, and SIRT4 can remove lipoic acid. These results provide new insight into sirtuin function and a means for cellular removal of an expanding list of endogenous lysine modifications. Given that SIRT6 is a poor deacetylase in vitro, but binds and prefers to hydrolyze long-chain acylated peptides, we hypothesize that binding of certain free fatty acids (FFAs) could stimulate deacetylation activity. Indeed, we demonstrate that several biologically relevant FFAs (including myristic, oleic, and linoleic acids) at physiological concentrations induce up to a 35-fold increase in catalytic efficiency of SIRT6 but not SIRT1. The activation mechanism is consistent with fatty acid inducing a conformation that binds acetylated H3 with greater affinity. Binding of long-chain FFA and myristoylated H3 peptide is mutually exclusive. We discuss the implications of discovering endogenous, small-molecule activators of SIRT6.  相似文献   
25.
A new adduct of iriflophene and flavonoid, 1, 8, 10, 10b-tetrahydroxy-3-methoxy-5a-(3,4-dihydr- oxyphenyl)-9-(4-hydroxybenzoyl)-5a,10b-dihydro-11H-benzofuro[2,3-b]chromen-11-one (1), together with six known compounds were isolated from the EtOH extract from Sedum aizoon L. Their chemical structures were elucidated by analyses of spectral data. The chemotaxonomic analysis of the compounds was discussed, compounds 14 provide important chemotaxonomic markers for S. aizoon.  相似文献   
26.
Leucine zippers are oligomerization domains used in a wide range of proteins. Their structure is based on a highly conserved heptad repeat sequence in which two key positions are occupied by leucines. The leucine zipper of the cell cycle-regulated Nek2 kinase is important for its dimerization and activation. However, the sequence of this leucine zipper is most unusual in that leucines occupy only one of the two hydrophobic positions. The other position, depending on the register of the heptad repeat, is occupied by either acidic or basic residues. Using NMR spectroscopy, we show that this leucine zipper exists in two conformations of almost equal population that exchange with a rate of 17 s(-1). We propose that the two conformations correspond to the two possible registers of the heptad repeat. This hypothesis is supported by a cysteine mutant that locks the protein in one of the two conformations. NMR spectra of this mutant showed the predicted 2-fold reduction of peaks in the (15)N HSQC spectrum and the complete removal of cross peaks in exchange spectra. It is possible that interconversion of these two conformations may be triggered by external signals in a manner similar to that proposed recently for the microtubule binding domain of dynein and the HAMP domain. As a result, the leucine zipper of Nek2 kinase is the first example where the frameshift of coiled-coil heptad repeats has been directly observed experimentally.  相似文献   
27.
28.
Lacquer polysaccharide (LP) was isolated from the sap of lac tree (Rhus vernicifera). Its derivatives, carboxymethyl LP, sulfated LP and debranching LP were prepared. Their structure was analyzed by GPC, FT-IR and NMR spectroscopy. The sugar components of carboxymethyl and sulfated LPs hardly changed, but the molecular weight of the former decreased. The side chains of LPs were partially removed using sodium periodate in mild conditions and the pyranose ring β-configuration of products obtained was not changed. Bioactivity of natural and modified LPs against leukopenia induced by cyclophosphamide (CP) was investigated in mice. LP exhibited a significant bioactivity (P<0.05) compared to positive control group (CP). The bioactivity could increase slightly with the increasing of the contents of carboxymethyl groups. However, with the removal of the side chains and the incorporation of sulfate groups, the bioactivity gradually decreased. These showed that the bioactivity of lacquer polysaccharides against leukopenia induced by CP was strongly dependent on the types of ionic groups of the polysaccharides and concerned with the side chains with 4-O-methyl-β-glucuronic acid in the terminal.  相似文献   
29.
The role of chemical fingerprinting: application to Ephedra   总被引:5,自引:0,他引:5  
Ephedra sinica, known as Ma Huang, is one of the oldest medicinal herbs in Traditional Chinese Medicine (TCM). Preparations, namely teas, of E. sinica have been used for over 5000 years as a stimulant and as an antiasthmatic. In the West, extracts of E. sinica, E. intermedia or E. equisetina are most commonly used in dietary supplements as a stimulant and to promote weight loss. More than 50 species of Ephedra are native to both hemispheres, but the detection of ephedrine alkaloids has been limited to species in Eurasia. Currently, methods exist to quantitate the ephedrine alkaloids in extracts of plant material or dietary supplements, but the methods are not able to verify the extract is of an Ephedra species. Reverse phase high performance liquid chromatography with photodiode array detection was applied for the chemical fingerprinting of the Ephedra species. Two regions of comparison were determined in the chromatograms at 320 nm. The series of peaks between 52 and 64 min confirms an Ephedra species is being analyzed. The aforementioned peaks also could distinguish between Ephedra species from Eurasia, North America and South America. Peaks at ca. 57 and 59 min were isolated and determined to be two new compounds, 4-(2-eicosyloxycarbonyl-vinyl)-benzoic acid and 4-(2-docosyloxycarbonyl-vinyl)-benzoic acid respectively. Authentication of ground plant material as Ephedra can be achieved by this chemical fingerprinting method.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号