首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4041篇
  免费   84篇
  国内免费   25篇
  2023年   23篇
  2022年   31篇
  2021年   34篇
  2020年   49篇
  2019年   46篇
  2018年   52篇
  2017年   29篇
  2016年   48篇
  2015年   41篇
  2014年   55篇
  2013年   193篇
  2012年   53篇
  2011年   330篇
  2010年   261篇
  2009年   356篇
  2008年   275篇
  2007年   267篇
  2006年   265篇
  2005年   261篇
  2004年   304篇
  2003年   89篇
  2002年   168篇
  2001年   57篇
  2000年   51篇
  1999年   66篇
  1998年   133篇
  1997年   49篇
  1996年   74篇
  1995年   146篇
  1994年   65篇
  1993年   17篇
  1992年   34篇
  1991年   15篇
  1990年   22篇
  1989年   15篇
  1988年   14篇
  1987年   17篇
  1986年   9篇
  1985年   10篇
  1984年   17篇
  1983年   16篇
  1982年   22篇
  1981年   9篇
  1980年   14篇
  1979年   15篇
  1978年   10篇
  1977年   6篇
  1976年   6篇
  1975年   5篇
  1974年   3篇
排序方式: 共有4150条查询结果,搜索用时 234 毫秒
81.
Nigericin is a monocarboxylic polyether molecule described as a mobile K+ ionophore unable to transport Li+ and Cs+ across natural or artificial membranes. This paper shows that the ion carrier molecule forms complexes of equivalent energy demands with Li+, Cs+, Na+, Rb+, and K+. This is in accordance with the similar values of the complex stability constants obtained from nigericin with the five alkali metal cations assayed. On the other hand, nigericinalkali metal cation binding isotherms show faster rates for Li+ and Cs+ than for Na+, K+, and Rb+, in conditions where the carboxylic proton does not dissociate. Furthermore, proton NMR spectra of nigericin-Li+ and nigericin-Cs+ complexes show wide broadenings, suggesting strong cation interaction with the ionophore; in contrast, the complexes with Na+, K+, and Rb+ show only clear-cut chemical shifts. These latter results support the view that nigericin forms highly stable complexes with Li+ and Cs+ and contribute to the explanation for the inability of this ionophore to transport the former cations in conditions where it catalyzes a fast transport of K+>Rb+>Na+.Part of the results of this paper were presented at the 14th International Congress of Biochemistry in Prague, Czechoslovakia.  相似文献   
82.
Lowering the pH of the incubation medium to pH 5.4 leads to grana formation morphologically similar to that induced by metal cations. The same phenomenon is observed in EDTA-washed chloroplasts, indicating that it is not due in part to electrostatic ‘masking’ by residual cations associated with the membranes. Digitonin fractionation studies have indicated that the distribution of the major chlorophyll-protein complexes between granal and stromal membrane regions is similar at pH 5.4 in the absence of Mg2+, and at pH 7.4 in the presence of Mg2+. Chlorophyll fluorescence induction studies have indicated that the primary photochemistry of Photosystem II (PS II) is stimulated by lowering the pH to 5.4, just as it is upon metal cation addition at higher pH values. The failure to observe such an increase at pH 5.4 by measuring electron transport to ferricyanide is attributed to a combination of an inhibition by this pH of electron transport at a site after Q reduction and an increase in the number of PS II centres detached from the plastoquinone pool. We conclude that the stacked configuration of chloroplast membranes leads to increased PS II primary photochemistry, which is most simply explained in terms of a redistribution of excitation energy towards PS II.  相似文献   
83.
Summary The interactions of Ni(II) cation with a representative suite of purine bases and the respective nucleosides and nucleotides have been studied by ultraviolet difference spectroscopy. Apparent association constants, Kapp, were determined for each system at pH 7.0, using computer linear regression coupled with an iteration technique. The specificity of binding of Ni2+ for the purine nucleotides studied at pH 7.0 was 5-GMP > 5-IMP > 5-AMP; a similiar ordering was also found for the respective nucleosides and bases. In this study binding was not observed for the suite of pyramidines used, although a Ni2+ - cytidine complex has been observed (Fiskin and Beer, 1965). It was also found that Ni2+ bound more strongly to the purine 5-nucleotides than to the respective nucleosides and bases. These trends are explained in terms of metal-ligand bonds and available bonding positions on the ligands. A role for metal-ion-nucleotide types of complexes is suggested in the processes that might have given rise to the origin of life.  相似文献   
84.
The development of chlorosomes and their pigmentation were studied by growing Chloroflexus aurantiacus strain Ok-7o-fl first under conditions under which BChl c-synthesis is low (50°C, 2000 lux and 30°C, 1500 lux) and subsequently under conditions promoting high BChl c-synthesis (50°C, 400 lux). Electron microscopic observations on and chemical analyses of isolated cell components showed that in BChl c-depleted cells chlorosome-like structures (chlorosome bags) are attached to fragments of cytoplasmic membranes. These chlorosome bags exhibit a periodic fine structure caused by the construction of the baseplates of the chlorosomes. The baseplates are closely attached to the cytoplasmic membrane, they are rich in phospholipids and apparently contain a 790 nm-BChl a-complex. Chlorosome bags of BChl c-depleted cells always contain a limited amount of light-harvesting pigment complexes (BChlc, - and -carotene). The light-harvesting system is restored (50°C, 400 lux) by first refilling the existing chlorosome bags before cell division takes place.Abbreviations BChl Bacteriochlorophyll - LH Light-harvesting complex - RC Reaction center  相似文献   
85.
Murine splenic B lymphocytes are induced to proliferate and undergo polyclonal activation in the presence of Fc fragments, AHGG, antigen-antibody complexes, and CH3 fragments derived from plasmin digestion of human Ig. The unifying feature of the polyclonal antibody response induced by these agents is that in all cases a portion of the constant region of the Ig molecule (ie, Fc region) is present. Fragments of Ig lacking the Fc piece, such as Fab and F(ab′)2 were found not to be stimulatory. In addition, a model is proposed to account for the regulatory effects of antigen-antibody complexes on an ongoing humoral immune response.  相似文献   
86.
Envelope- and stroma-free thylakoid membranes of Vicia faba chloroplasts were incubated with trypsin or pronase for several hours. The indigestible residue was analyzed by polyacrylamide gel electrophoresis. Trypsinization resulted in a complete digestion of all proteins with the exception of the pigment-protein complexes as well as a polypeptide not yet characterized. Yet, as compared with untreated material, Complex II was found to have higher electrophoretic mobility. Electron-microscopic studies illustrate that the indigestible residue still has a preserved membrane structure. Disintegration of the thylakoid membranes by sodium dodecyl sulfate followed by trypsinization also resulted in the two complexes while all the other proteins were found to be digested. However, after removal of the lipids the protein moieties of the complexes proved to be easily digestible. From these results it is concluded that pigment-protein interaction may be an important factor in maintaining a conformation rather resistant to perturbants and proteases. In contrast to trypsin, pronase completely digested the polypeptides of the thylakoid membranes including the protein moieties of the pigment-protein complexes leaving an amorphous lipid mass. The results support the assumption that the complexes are necessary to maintain the membrane structure.  相似文献   
87.
Summary In the lamina ganglionaris, the first optic ganglion of the fly, the inventory of cell types as well as the patterns of their connections are well known from light microscopic investigations. Even the synaptic contacts are known with relative completeness. However, the structural details visible on electron micrographs are very difficult to interpret in functional terms. This paper concentrates on two aspects: 1) the synaptic complex between a retinula cell axon and four postsynaptic elements, arranged in a constant elongated array (it is suggested that all synapses in which the retinula cell is presynaptic are of this kind), and 2) the gnarl complex in which a presynaptic specialization in one neuron is separated from another neuron by a complicated glial invagination. The participation of glia at postsynaptic sites seems to be quite common in this ganglion. Occasionally it seems that a glia cell is the only postsynaptic partner facing a presynaptic specialization within a neuron.  相似文献   
88.
The complex C60Pt[P(OPh)3]2 displays C60 ππ* intraligand bands in the UV-Vis region and a long-wavelength absorption at λmax = 770 nm which is assigned to a metal-to-ligand charge transfer (MLCT) transition from platinum to fullerene. The irradiation of the complex leads to the population of the reactive MLCT state and subsequently to the dissociation (C60Pt[P(OPh)3]2 → C60 + Pt[P(OPh)3]2) in the primary photochemical step. Product formation takes place by the interception of Pt[P(OPh)3]2 with suitable scavengers such as CHCl3 or O2.  相似文献   
89.
90.
A series of new heteroleptic, tris(polypyridyl)chromium(III) complexes, [Cr(phen)2L]3+ (L = substituted phenanthrolines or bipyridines), has been prepared and characterized, and their photophyical properties in a number of solvents have been investigated. X-ray crystallography measurements confirmed that the cationic (3+) units contain only one ligand L plus two phenanthroline ligands. Electrochemical and photophysical data showed that both ground state potentials and lifetime decays are sensitive to ligand structure and the nature of the solvent with the exception of compounds containing L = 5-amino-1,10-phenanthroline (aphen) and 2,2′-bipyrimidine (bpm). Addition of electron-donating groups in the ligand structure shifts redox potentials to more negative values than those observed for the parent compound, [Cr(phen)3]3+. Emission decays show a complex dependence with the solvent. The longest lifetime was observed for [Cr(phen)2(dip)]3+ (dip = 4,7-diphenylphenanthroline) in air-free aqueous solutions, τ = 273 μs. Solvent effects are explained in terms of the affinity of hydrophobic complexes for non-polar solvent molecules and the solvent microstructure surrounding chromium units.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号