首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   1篇
  国内免费   2篇
  2020年   2篇
  2019年   2篇
  2017年   1篇
  2014年   8篇
  2013年   14篇
  2012年   32篇
  2011年   45篇
  2010年   44篇
  2009年   7篇
  2008年   3篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   4篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
排序方式: 共有201条查询结果,搜索用时 125 毫秒
41.
We have been studying chaperonins these past twenty years through an initial discovery of an action in protein folding, analysis of structure, and elucidation of mechanism. Some of the highlights of these studies were presented recently upon sharing the honor of the 2013 Herbert Tabor Award with my early collaborator, Ulrich Hartl, at the annual meeting of the American Society for Biochemistry and Molecular Biology in Boston. Here, some of the major findings are recounted, particularly recognizing my collaborators, describing how I met them and how our great times together propelled our thinking and experiments.  相似文献   
42.
In two previous studies, we identified compound 1 as a moderate GroEL/ES inhibitor with weak to moderate antibacterial activity against Gram-positive and Gram-negative bacteria including Bacillus subtilis, methicillin-resistant Staphylococcus aureus, Klebsiella pneumonia, Acinetobacter baumannii, and SM101 Escherichia coli (which has a compromised lipopolysaccharide biosynthetic pathway making bacteria more permeable to drugs). Extending from those studies, we developed two series of analogs with key substructures resembling those of known antibacterials, nitroxoline (hydroxyquinoline moiety) and nifuroxazide/nitrofurantoin (bis-cyclic-N-acylhydrazone scaffolds). Through biochemical and cell-based assays, we identified potent GroEL/ES inhibitors that selectively blocked E. faecium, S. aureus, and E. coli proliferation with low cytotoxicity to human colon and intestine cells in vitro. Initially, only the hydroxyquinoline-bearing analogs were found to be potent inhibitors in our GroEL/ES-mediated substrate refolding assays; however, subsequent testing in the presence of an E. coli nitroreductase (NfsB) in situ indicated that metabolites of the nitrofuran-bearing analogs were potent GroEL/ES inhibitor pro-drugs. Consequently, this study has identified a new target of nitrofuran-containing drugs, and is the first reported instance of such a unique class of GroEL/ES chaperonin inhibitors. The intriguing results presented herein provide impetus for expanded studies to validate inhibitor mechanisms and optimize this antibacterial class using the respective GroEL/ES chaperonin systems and nitroreductases from E. coli and the ESKAPE bacteria.  相似文献   
43.
Sequence analysis of the Legionella micdadei groELS operon   总被引:4,自引:0,他引:4  
A 2.7 kb DNA fragment encoding the 60 kDa common antigen (CA) and a 13 kDa protein of Legionella micdadei was sequenced. Two open reading frames of 57,677 and 10,456 Da were identified, corresponding to the heat shock proteins GroEL and GroES, respectively. Typical -35, -10, and Shine-Dalgarno heat shock expression signals were identified upstream of the L. micdadei groEL gene. Further upstream, a poly-T region, also a feature of the sigma 32-regulated Escherichia coli groELS heat shock operon, was found. Despite the high degree of homology of the expression signals in E. coli and L. micdadei, Western blot analysis with an L. micdadei specific anti-groEL antibody did not reveal a significant increase in the amount of the GroEL protein during heat shock in L. micdadei or in the recombinant E. coli expressing L. micdadei GroEL.  相似文献   
44.
Clearance of misfolded proteins in the endoplasmic reticulum (ER) is traditionally handled by ER-associated degradation (ERAD), a process that requires retro-translocation and ubiquitination mediated by a luminal chaperone network. Here we investigated whether the secreted, glaucoma-associated protein myocilin was processed by this pathway. Myocilin is typically transported through the ER/Golgi network, but inherited mutations in myocilin lead to its misfolding and aggregation within trabecular meshwork cells, and ultimately, ER stress-induced cell death. Using targeted knockdown strategies, we determined that glucose-regulated protein 94 (Grp94), the ER equivalent of heat shock protein 90 (Hsp90), specifically recognizes mutant myocilin, triaging it through ERAD. The addition of mutant myocilin to the short list of Grp94 clients strengthens the hypothesis that β-strand secondary structure drives client association with Grp94. Interestingly, the ERAD pathway is incapable of efficiently handling the removal of mutant myocilin, but when Grp94 is depleted, degradation of mutant myocilin is shunted away from ERAD toward a more robust clearance pathway for aggregation-prone proteins, the autophagy system. Thus ERAD inefficiency for distinct aggregation-prone proteins can be subverted by manipulating ER chaperones, leading to more effective clearance by the autophagic/lysosomal pathway. General Hsp90 inhibitors and a selective Grp94 inhibitor also facilitate clearance of mutant myocilin, suggesting that therapeutic approaches aimed at inhibiting Grp94 could be beneficial for patients suffering from some cases of myocilin glaucoma.  相似文献   
45.
Protein disaggregation in Escherichia coli is carried out by ClpB, an AAA(+) (ATPases associated with various cellular activities) molecular chaperone, together with the DnaK chaperone system. Conformational changes in ClpB driven by ATP binding and hydrolysis promote substrate binding, unfolding, and translocation. Conserved pore tyrosines in both nucleotide-binding domain-1 (NBD-1) and -2 (NBD-2), which reside in flexible loops extending into the central pore of the ClpB hexamer, bind substrates. When the NBD-1 pore loop tyrosine is substituted with alanine (Y251A), ClpB can collaborate with the DnaK system in disaggregation, although activity is reduced. The N-domain has also been implicated in substrate binding, and like the NBD-1 pore loop tyrosine, it is not essential for disaggregation activity. To further probe the function and interplay of the ClpB N-domain and the NBD-1 pore loop, we made a double mutant with an N-domain deletion and a Y251A substitution. This ClpB double mutant is inactive in substrate disaggregation with the DnaK system, although each single mutant alone can function with DnaK. Our data suggest that this loss in activity is primarily due to a decrease in substrate engagement by ClpB prior to substrate unfolding and translocation and indicate an overlapping function for the N-domain and NBD-1 pore tyrosine. Furthermore, the functional overlap seen in the presence of the DnaK system is not observed in the absence of DnaK. For innate ClpB unfolding activity, the NBD-1 pore tyrosine is required, and the presence of the N-domain is insufficient to overcome the defect of the ClpB Y251A mutant.  相似文献   
46.
The ATP-binding cassette transporter ABCB4 is a phosphatidylcholine translocator specifically expressed at the bile canalicular membrane in hepatocytes, highly homologous to the multidrug transporter ABCB1. Variations in the ABCB4 gene sequence cause progressive familial intrahepatic cholestasis type 3. We have shown previously that the I541F mutation, when reproduced either in ABCB1 or in ABCB4, led to retention in the endoplasmic reticulum (ER)/Golgi. Here, Madin-Darby canine kidney cells expressing ABCB1-GFP were used as a model to investigate this mutant. We show that ABCB1-I541F is not properly folded and is more susceptible to in situ protease degradation. It colocalizes and coprecipitates with the ER chaperone calnexin and coprecipitates with the cytosolic chaperone Hsc/Hsp70. Silencing of calnexin or overexpression of Hsp70 have no effect on maturation of the mutant. We also tested potential rescue by chemical and pharmacological chaperones. Thapsigargin and sodium 4-phenyl butyrate were inefficient. Glycerol improved maturation and exit of the mutant from the ER. Cyclosporin A, a competitive substrate for ABCB1, restored maturation, plasma membrane expression, and activity of ABCB1-I541F. Cyclosporin A also improved maturation of ABCB4-I541F in Madin-Darby canine kidney cells. In HepG(2) cells transfected with ABCB4-I541F cDNA, cyclosporin A allowed a significant amount of the mutant protein to reach the membrane of bile canaliculi. These results show that the best strategy to rescue conformation-defective ABCB4 mutants is provided by pharmacological chaperones that specifically target the protein. They identify cyclosporin A as a potential novel therapeutic tool for progressive familial intrahepatic cholestasis type 3 patients.  相似文献   
47.
伴侣蛋白CCT在蛋白折叠、抗胁迫以及调节细胞生长等生理过程中担负重要作用。研究利用同源克隆和RACE技术克隆了皱纹盘鲍伴侣蛋白CCTζ(HdhCCTζ)cDNA全长序列,并对CCTζ基因的序列特征进行了分析。HdhCCTζcDNA序列长1960 bp,开放阅读框为1599 bp,编码532个氨基酸,生物学软件推测其编码蛋白相对分子量为58.46 kD,等电点为6.53。BLAST分析结果表明HdhCCTζ与哺乳动物、鸟和鱼类等物种的CCT具有较高的同源性。生物信息学分析结果显示,HdhCCTζ蛋白序列中包含3个典型的CCT信号基序(35RTNLGPKGTLKML47,56LTKDGNVLLHEMQIQHP72和84QDDITGDGT92)以及1个腺苷三磷酸结合基序(89GDGTTS94)。此外,在HdhCCTζ蛋白序列中还包含3个糖基化位点(23NISA26,128NKSL131and234NVSL237)。实时荧光定量PCR检测结果显示,HdhCCTζ在皱纹盘鲍组织中为组成型表达,但主要集中在性腺、血淋巴和肝胰腺中表达。使用不同锌含量(6.69 mg/kg、33.85 mg/kg、710.63 mg/kg和3462.5 mg/kg)的日粮来饲喂幼鲍20周后,取其肝脏和血细胞总RNA,利用实时荧光定量PCR技术进行HdhCCTζmRNA的表达水平分析。分析结果显示,随着日粮中锌含量的增加,HdhCCTζmRNA在血淋巴和肝胰腺中的表达水平呈现上调的趋势。相比于锌适量组(33.85 mg/kg),过量的锌(3462.5 mg/kg)却能够下调HdhCCTζmRNA的表达水平。上述结果表明,HdhCCTζ的表达受到日粮中锌添加量的影响,而高表达量的HdhCCTζ可能在提高皱纹盘鲍机体抗胁迫过程中发挥重要作用。  相似文献   
48.
49.
50.
Uncoupling of NO production from NADPH oxidation by endothelial nitric-oxide synthase (eNOS) is enhanced in hyperglycemic endothelium, potentially due to dissociation of heat shock proteins 90 (Hsp90), and cellular glucose homeostasis is enhanced by a ROS-induced positive feed back mechanism. In this study we investigated how such an uncoupling impacts oxygen metabolism and how the oxidative phosphorylation can be preserved by heat shock (42 °C for 2 h, hyperthermia) in bovine aortic endothelial cells. Normal and heat-shocked bovine aortic endothelial cells were exposed to normoglycemia (NG, 5.0 mm) or hyperglycemia (30 mm). With hyperglycemia treatment, O2 consumption rate was reduced (from VO2max = 7.51 ± 0.54 to 2.35 ± 0.27 mm Hg/min/106 cells), whereas in heat-shocked cells, O2 consumption rate remained unaltered (8.19 ± 1.01 mm Hg/min/10 × 106 cells). Heat shock was found to enhance Hsp90/endothelial NOS interactions and produce higher NO. Moreover, ROS generation in the hyperglycemic condition was also reduced in heat-shocked cells. Interestingly, glucose uptake was reduced in heat-shocked cells as a result of decrease in Glut-1 protein level. Glucose phosphate dehydrogenase activity that gives rise to NADPH generation was increased by hyperthermia, and mitochondrial oxidative metabolism was preserved. In conclusion, the present study provides a novel mechanism wherein the reduced oxidative stress in heat-shocked hyperglycemic cells down-regulates Glut-1 and glucose uptake, and fine-tuning of this pathway may be a potential approach to use for therapeutic benefit of diabetes mellitus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号