首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2639篇
  免费   165篇
  国内免费   147篇
  2024年   1篇
  2023年   12篇
  2022年   17篇
  2021年   14篇
  2020年   54篇
  2019年   40篇
  2018年   64篇
  2017年   39篇
  2016年   50篇
  2015年   93篇
  2014年   135篇
  2013年   103篇
  2012年   66篇
  2011年   122篇
  2010年   126篇
  2009年   95篇
  2008年   135篇
  2007年   155篇
  2006年   152篇
  2005年   129篇
  2004年   114篇
  2003年   106篇
  2002年   87篇
  2001年   91篇
  2000年   92篇
  1999年   89篇
  1998年   72篇
  1997年   95篇
  1996年   61篇
  1995年   53篇
  1994年   41篇
  1993年   61篇
  1992年   53篇
  1991年   40篇
  1990年   43篇
  1989年   31篇
  1988年   34篇
  1987年   34篇
  1986年   37篇
  1985年   26篇
  1984年   30篇
  1983年   18篇
  1982年   13篇
  1981年   10篇
  1980年   9篇
  1979年   4篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
排序方式: 共有2951条查询结果,搜索用时 875 毫秒
91.
92.
Supra-optimal levels of zinc in primary leaves of Phaseolus vulgaris increased the CO2 compensation point and inhibited net photosynthesis. Leaf morphology was modified: mesophyll intercellular area, stomatal slit length and interstomatal distance were reduced, but stomatal density increased. Internal and stomatal conductances to CO2 diffusion decreased. These changes are discussed in relation to the observed effects on leaf gas exchange and to the previously reported inhibition of different photosynthetic and photorespiratory enzymes.  相似文献   
93.
Rates of net CO2 uptake were examined in developing leaves of Hydrocotyle bonariensis. Leaves that developed under high photosynthetically active radiation (48 mol m-2 day-1 PAR) were smaller, thicker, and reached maximum size sooner than did leaves that developed under low PAR (4.8 mol m-2 day-1). Maximum net CO2 uptake rates were reached after 5 to 6 days expansion for both the low and the high PAR leaves. Leaves grown at high PAR had higher maximum photosynthetic rates and a higher PAR required for light saturation but showed a more rapid decline in rate with age than did low PAR leaves. To assess the basis for the difference observed in photosynthetic rates, CO2 diffusion conductances and the mesophyll surface available for CO2 absorption were examined for mature leaves. Stomatal conductance was the largest conductance in all treatments and did not vary appreciably with growth PAR. Mesophyll conductance progressively increased with growth PAR (up to 48 mol m-2 day-1) as did the mesophyll surface area per unit leaf area, but the cellular conductance exhibited most of its increase at low PAR (up to 4.8 mol m-2 day-1).  相似文献   
94.
Summary The role of adenosine 3,5-monophosphate (cAMP) dependent protein kinase (PK-A) on the Cl conductance has been studied in the apical membrane vesicles purified from the chorionic villi of human placenta. In order to phosphorylate the cytosolic side of the membranes, vesicles have been hypotonically lysed, loaded with 100nm catalytic subunit of PK-A purified from human placenta and 1mm of the phosphatase resistant adenosine 5-thiotriphosphate (ATP-gamma-S) and resealed. Cl conductance has been measured by the quenching of the fluorescent probe 6-methoxy-N-(3-sulfopropyl) quinolinium (SPQ) at 23°C with membrane potential clamped at 0 mV. The actual volume of the resealed vesicles was measured in each experiment by trapping an impermeable radioactive molecule ([14C]-sucrose) and included in each Cl flux calculation. In 19 independent experiments, the mean Cl conductance in placental membranes in the absence of phosphorylation was 3.67±3.18 whereas with the addition of PK-A and ATP-gamma-S it was 1.97±1.75 nmol·sec–1·(mg protein)–1 (mean±sd). PK-A dependent phosphorylation reduced the Cl conductance in 14/19 experiments. The same protocol applied to the apical membranes of bovine trachea, where PK-A is known to activate the Cl channels, confirmed that the PK-A dependent phosphorylation increased the Cl conductance in 11/13 experiments, from 1.01±0.61 to 1.85±0.99 nmol·sec–1·(mg protein)–1(mean±sd). These studies indicate that the PK-A dependent phosphorylation inhibits one or more Cl channel(s) of the apical membranes of human placenta.  相似文献   
95.
Summary A knowledge of the relationship between ion flow, both passive and active, ionic concentration, and membrane potential is essential to the understanding of cellular function. The problem has been analyzed on the basis of elementary physical and biophysical principles, providing a theoretical model of current flow and resting potential of cells, including those in epithelia. The model assumes that the permeability of the ion channets is not voltage dependent, but applies to gated channels when the gates are open. Two sources of nonlinearity of the current-voltage relationship are included in the analysis: ionic depletion and accumulation at the channels' mouths, and channel saturation at higher concentrations. The predictions of the model have been quantitative, validated by comparison with experiment, which has been limited to the only two cases in which adequate data was found. Application of the theory to the scala media of the mammalian cochlea has explained the source of its high positive potential and provided estimates of the Na+ and K+ permeabilities of the membranes of its marginel cess. This analysis provides a theoretically sound alternative to the widely used Goldman equation, the limited validity of which was emphasized by Goldman (D.E. Goldman, 1943,J. Gen. Physiol.27:37–60), as well as its derivatives, including the Goldman-Hodgkin-Katz equation for resting potentials.  相似文献   
96.
Summary We have recently shown that stimulation of electrogenic HCO 3 secretion is accompanied by a simultaneous increase in short-circuit current (I sc, equivalent to HCO 3 secretion rate under these conditions), apical membrane capacitance (C a , proportional to membrane area), and apical membrane conductance (G a , proportional to membrane ionic permeability). The current experiments were undertaken to explore the ionic basis for the increase inG a and the possibility that the rate of electrogenic HCO 3 secretion is regulated by changes inG a . Membrane electrical parameters were measured using impedance-analysis techniques before and after stimulation of electrogenic HCO 3 secretion with cAMP in three solutions which contained different chloride concentrations. In another series of experiments, the effects of an anion channel blocker, anthracene-9-carboxylic acid (9-AA), were measured after stimulation of electrogenic HCO 3 secretion with cAMP. The major conclusions are: (i) a measurable apical Cl conductance exists in control hemibladders; (ii) the transport-associated increase inG a includes a Cl-conductive component; (iii)G a also appears to reflect a HCO 3 conductance; (iv) the relative magnitudes of the apical membrane conductances to Cl and HCO 3 are similar; (v) 9-AA reducesG a andI sc appear cAMP-stimulated hemibladders; and (vi) alterations inI sc appear to be mediated by changes inG a .  相似文献   
97.
Summary We have previously shown that stimulation of apical Na-coupled glucose and alanine transport produces a transient depolarization of basolateral membrane potential (V bl) in rabbit proximal convoluted tubule (PCT. Sl segment). The present study is aimed at understanding the origin of the membrane repolarization following the intial effect of addition of luminal cotransported solutes. Luminal addition of 10–15mMl-alanine produced a rapid and highly significant depolarization ofV bl (20.3±1.1 mV,n=15) which was transient and associated with an increase in the fractional K+ conductance of the basolateral membrane (t K) from 8 to 29% (P<0.01,n=6). Despite the significant increase int K, the repolarization was only slightly reduced by the presence of basolateral Ba2+ (2mM,n=6) or quinine (0.5 mM,n=5). The repolarization was greatly reduced in the presence of 0.1 mM 4-acetamino-4isothiocyamostilbene-2,2-disulfonic acid (SITS) and blunted by bicarbonate-free solutions. Intracellular pH (pH i ) determined with the fluorescent dye 2, 7-bis-2-carboxyethyl-5(and-6)-carboxyfluorescein (BCECF), averaged 7.39±0.02 in control solution (n=9) and increased to 7.50±0.03 in the first 15 sec after the luminal application of alanine. This was followed by a significant acidification averaging 0.16±0.01 pH unit in the next 3 min. In conclusion, we believe that, contrary to other leaky epithelia, rabbit PCT can regulate its basolateral membrane potential not only through an increase in K+ conductance but also through a cellular acidification reducing the basolateral HCO 3 exit through the electrogenic Na-3(HCO3) cotransport mechanism.  相似文献   
98.
松茶间作茶树叶片的解剖构造和气孔活动   总被引:1,自引:0,他引:1  
本文利用光镜技术和MK-3型自动气孔计对松茶间作和单作茶园茶树叶片的解剖构造和气孔传导力进行了比较研究。研究表明,间作茶园茶树叶片的上表皮、栅拦组织和全叶均比单作茶树薄,分别为单作茶树的82.7%,78.2%和67.2%,叶质柔嫩。叶片气孔传导力比单作茶园低。嫩叶传导力>老叶;1芽5叶新梢按叶序3叶>2、4叶>1、5叶;按树冠垂直分布,冠上叶(0—5cm)>冠中叶(10—15cm)>冠下叶(30cm左右)。说明气孔传导力不仅受生态条件影响,与自身的叶龄、叶位等生理机能也有密切关系。  相似文献   
99.
Summary Passive proton permeability of gastrointestinal apical membrane vesicles was determined. The nature of the pathways for proton permeation was investigated using amiloride. The rate of proton permeation (k H + was determined by addition of vesicles (pH i = 6.5) to a pH 8.0 solution containing acridine orange. The rate of recovery of acridine orange fluorescence after quenching by the acidic vesicles ranged from 4 × 10–3 (gastric parietal cell stimulation-associated vesicles; SAV) and 5 × 10–3 (duodenal brush-border membrane vesicles; dBBMV) to 11 × 10+–3 sec–1 (ileal BBMV; iBBMV). Amiloride, 0.03 and 0.1 mm, significantly reduced the rate of proton permeation in dBBMV and iBBMV, but not gastric SAV. The decreases in k H + were proportionately greater in iBBMV as compared with dBBMV. The presence of Na+/H+ exchange was demonstrated in both dBBMV and iBBMV by proton-driven (pH i < pH o ) 22Na+ uptake. Evidence was also sought for the conductive nature of pathways for proton permeation. Intravesicular acidification, again determined by quenching of acridine orange fluorescence, was observed during imposition of K+-diffusion potential ([K+] i [K+ o ). In dBBMV and iBBMV, intravesicular acidification was enhanced in the presence of the K+-ionophore valinomycin, indicating that the native K+ permeability is rate limiting. In the presence of valinomycin, the K+-diffusion potential drove BBMV intravesicular acidification to levels close to the electrochemical potential. In gastric SAV, acidification was not limited by the K+ permeability. Valinomycin was without effect, but the K+/H+ ionophore nigericin enhanced acidification in gastric SAV, illustrating the low proton permeability of these membranes. Amiloride, 0.03–1 mm, resulted in concentration-dependent reductions of K+-diffusion potential-driven acidification in dBBMV and iBBMV but not in gastric SAV. These data demonstrate that proton permeation in the three membrane types is rheogenic. The sensitivity of the proton-conductive pathways in intestinal BBMV to high concentrations of amiloride correlated with the presence of the Na+/H+ antiport and indicates that this transmembrane protein may represent a pathway for proton permeation.We thank Ruth Briggs for assistance with the Na/H exchange experiments. This work was supported by a grant from the Medical Research Council (G8418056CA).  相似文献   
100.
Carbon: terrestrial C4 plants   总被引:1,自引:1,他引:0  
The carbon isotope composition of terrestrial C4 plants depends on the primary carboxylation of phosphoenolpyruvate (PEP) and on the diffusion of CO2 to the carboxylation sites, but is also influenced by the final carboxylation of ribulose-1,5-bisphosphate (RuBP). Several models have been used for reproducing this complex situation. In the present review, a particular model is applied as a means to interpret the effects of environmental and genetically determined factors on carbon isotope discrimination during C4 photosynthesis. As a new feature, the model considers four types of limitation of the overall CO2 assimilation rate. Both carboxylation reactions are assumed to be limited by either maximum enzyme activity or maximum substrate regeneration rate. The model is applied to experimental data on the effects of CO2, irradiance and water stress on short-term discrimination by leaves of several C4 species measured simultaneously with CO2 gas exchange characteristics. In particular, different patterns of the influence of low irradiances on carbon isotope discrimination are interpreted as due to variations in that irradiance at which a transition from limitation by PEP regeneration rate and RuBP carboxylase activity to limitation by the regeneration rates of both substrates occurs. After discussing literature data on the effects of environmental conditions on carbon isotope discrimination by C4 plants seasonal and developmental changes in carbon isotope composition, studies on the systematic and geographic distribution of C4 plants, evolutionary and genetical aspects, and some ecological implications are reviewed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号