首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5391篇
  免费   362篇
  国内免费   1330篇
  2024年   17篇
  2023年   155篇
  2022年   191篇
  2021年   253篇
  2020年   253篇
  2019年   275篇
  2018年   224篇
  2017年   204篇
  2016年   206篇
  2015年   213篇
  2014年   260篇
  2013年   426篇
  2012年   239篇
  2011年   237篇
  2010年   209篇
  2009年   345篇
  2008年   366篇
  2007年   347篇
  2006年   285篇
  2005年   267篇
  2004年   205篇
  2003年   188篇
  2002年   160篇
  2001年   187篇
  2000年   156篇
  1999年   155篇
  1998年   109篇
  1997年   103篇
  1996年   94篇
  1995年   87篇
  1994年   83篇
  1993年   69篇
  1992年   67篇
  1991年   62篇
  1990年   43篇
  1989年   46篇
  1988年   27篇
  1987年   24篇
  1986年   26篇
  1985年   40篇
  1984年   30篇
  1983年   15篇
  1982年   19篇
  1981年   16篇
  1980年   12篇
  1979年   11篇
  1977年   15篇
  1976年   16篇
  1975年   18篇
  1974年   12篇
排序方式: 共有7083条查询结果,搜索用时 78 毫秒
171.
172.
173.
Soil legacy effects are commonly highlighted as drivers of plant community dynamics and species co‐existence. However, experimental evidence for soil legacy effects of conditioning plant communities on responding plant communities under natural conditions is lacking. We conditioned 192 grassland plots using six different plant communities with different ratios of grasses and forbs and for different durations. Soil microbial legacies were evident for soil fungi, but not for soil bacteria, while soil abiotic parameters did not significantly change in response to conditioning. The soil legacies affected the composition of the succeeding vegetation. Plant communities with different ratios of grasses and forbs left soil legacies that negatively affected succeeding plants of the same functional type. We conclude that fungal‐mediated soil legacy effects play a significant role in vegetation assembly of natural plant communities.  相似文献   
174.
FK506‐sensitive proline rotamases (FPRs), also known as FK506‐binding proteins (FKBPs), can mediate immunosuppressive drug resistance in budding yeast but their physiological roles in filamentous fungi remain opaque. Here, we report that three FPRs (cytosolic/nuclear 12.15‐kD Fpr1, membrane‐associated 14.78‐kD Fpr2 and nuclear 50.43‐kD Fpr3) are all equally essential for cellular Ca2+ homeostasis and contribute significantly to calcineurin activity at different levels in the insect‐pathogenic fungus Beauveria bassiana although the deletion of fpr1 alone conferred resistance to FK506. Radial growth, conidiation, conidial viability and virulence were less compromised in the absence of fpr1 or fpr2 than in the absence of fpr3, which abolished almost all growth on scant media and reduced growth moderately on rich media. The Δfpr3 mutant was more sensitive to Na+, K+, Mn2+, Ca2+, Cu2+, metal chelate, heat shock and UVB irradiation than was Δfpr2 while both mutants were equally sensitive to Zn2+, Mg2+, Fe2+, H2O2 and cell wall‐perturbing agents. In contrast, the Δfpr1 mutant was less sensitive to fewer stress cues. Most of 32 examined genes involved in DNA damage repair, Na+/K+ detoxification or osmotolerance and Ca2+ homeostasis were downregulated sharply in Δfpr2 and Δfpr3 but rarely so affected in Δfpr1, coinciding well with their phenotypic changes. These findings uncover important, but differential, roles of three FPRs in the fungal adaptation to insect host and environment and provide novel insight into their essential roles in calcium signalling pathway.  相似文献   
175.
Fungi play many essential roles in ecosystems. They facilitate plant access to nutrients and water, serve as decay agents that cycle carbon and nutrients through the soil, water and atmosphere, and are major regulators of macro‐organismal populations. Although technological advances are improving the detection and identification of fungi, there still exist key gaps in our ecological knowledge of this kingdom, especially related to function . Trait‐based approaches have been instrumental in strengthening our understanding of plant functional ecology and, as such, provide excellent models for deepening our understanding of fungal functional ecology in ways that complement insights gained from traditional and ‐omics‐based techniques. In this review, we synthesize current knowledge of fungal functional ecology, taxonomy and systematics and introduce a novel database of fungal functional traits (FunFun). FunFun is built to interface with other databases to explore and predict how fungal functional diversity varies by taxonomy, guild, and other evolutionary or ecological grouping variables. To highlight how a quantitative trait‐based approach can provide new insights, we describe multiple targeted examples and end by suggesting next steps in the rapidly growing field of fungal functional ecology.  相似文献   
176.
The early‐successional status of lichens in modern terrestrial ecosystems, together with the role lichen‐mediated weathering plays in the carbon cycle, have contributed to the long and widely held assumption that lichens occupied early terrestrial ecosystems prior to the evolution of vascular plants and drove global change during this time. Their poor preservation potential and the classification of ambiguous fossils as lichens or other fungal–algal associations have further reinforced this view. As unambiguous fossil data are lacking to demonstrate the presence of lichens prior to vascular plants, we utilize an alternate approach to assess their historic presence in early terrestrial ecosystems. Here, we analyze new time‐calibrated phylogenies of ascomycete fungi and chlorophytan algae, that intensively sample lineages with lichen symbionts. Age estimates for several interacting clades show broad congruence and demonstrate that fungal origins of lichenization postdate the earliest tracheophytes. Coupled with the absence of unambiguous fossil data, our work finds no support for lichens having mediated global change during the Neoproterozoic‐early Paleozoic prior to vascular plants. We conclude by discussing our findings in the context of Neoproterozoic‐Paleozoic terrestrial ecosystem evolution and the paleoecological context in which vascular plants evolved.  相似文献   
177.
Little of the historical extent of tallgrass prairie ecosystems remains in North America, and therefore there is strong interest in restoring prairies. However, slow‐growing prairie plants are initially weak competitors with the fast‐growing yet short‐lived weedy plant species that are typically abundant in recently established prairie restorations. One way to aid establishment of slow‐growing plant species is through adding soil amendments to prairie restorations before planting. Arbuscular mycorrhizal (AM) fungi form mutualisms with the roots of most terrestrial plants and are particularly important for the growth of slow‐growing prairie plant species. As prairie ecosystems are adapted to fires that leave biochar (charred organic material) in the soil, adding biochar as well as AM fungal strains from undisturbed remnant prairies into the soil of prairie restorations may improve restoration outcomes. Here, we test this prediction during the first four growing seasons of a prairie restoration. When prairie plant seedlings were inoculated prior to planting into the field with AM fungi derived from remnant prairies, that one‐time inoculation significantly increased growth of five of the nine tested plant species through at least two growing seasons. This long‐term benefit of AM fungal inoculation was unaffected by biochar addition to the soil. Biochar application rates of at least 10 tons/ha significantly decreased Coreopsis tripteris growth but acted synergistically with AM fungal inoculation to significantly improve survival of Schizachyrium scoparium. Overall, inoculation with native AM fungi can help promote prairie plant establishment, but concomitant use of biochar soil amendments had relatively little effect.  相似文献   
178.
Changes in temperature and moisture as a result of climate forcing can impact performance of planted trees. Tree performance may also be sensitive to new soil conditions, for example, brought about by seeds germinating in soils different from those colonized by ancestral populations. Such “edaphic constraint” may occur with natural migration or human‐assisted movement. Pinus ponderosa seedlings, sourced from one location (“home” site), were grown across a field environmental gradient in either their original home soil or in soils from two different “away” sites. Seedlings were inoculated with site‐specific soil organisms by germinating seeds in living soil. After 6 months, the inoculated seedlings were transplanted into sterilized soils from the home or away sites. This experimental design allowed us to uncouple the importance of abiotic and biotic soil properties and test (1) how biotic and abiotic soil properties interact with climate to influence plant growth and stress tolerance, and (2) the role of soil biota in facilitating growth in novel environments. Seedlings grew least in hotter and drier away sites with away soil biota. Home soil biota ameliorated negative impacts on growth of hotter and drier away sites. Measurements of photosynthetic rate, stomatal conductance, and chlorophyll florescence (Fv/Fm) suggest that edaphic constraint reduced growth by increasing tree water stress. Results suggest that success of Ponderosa pine plantings into warming environments will be enhanced by pre‐inoculation with native soil biota of the seed source.  相似文献   
179.
《Mycoscience》2020,61(1):37-42
Ascomata of a Metarhizium species were collected from Tochigi Prefecture, Japan. The ascomata were similar to M. kalasinense in its host preference for elaterids, olive-green clavate stromata, and obliquely immersed perithecia, but the asci and ascospores were significantly shorter in length than those of the latter species. Furthermore, phylogenetic analyses based on the internal transcribed spacer region of nuclear ribosomal DNA and the elongation factor 1-alpha gene showed that the Japanese species was phylogenetically distinctive in the M. anisopliae lineage, including M. kalasinense. Accordingly, we describe a new species, M. brachyspermum. Isolates of this species produced olive-green conidial masses on the surface of the colony. Also, hyphal anastomoses between two metulae were often observed on conidiophores.  相似文献   
180.
《Mycoscience》2020,61(5):240-248
Taxonomic studies including morphological observations and phylogenetic analyses were conducted on Japanese “uragin-take”, an unidentified species from Amazonia, Brazil and their allies. Phylogenetic analyses using ITS, nrLSU and RPB2 regions revealed that “uragin-take”, Neofomitella polyzonata and the unidentified species formed a monophyletic clade separate from the clade including the other four Neofomitella spp. and that “uragin-take” is conspecific with N. polyzonata. Morphological investigations on authentic specimens revealed that Polyporus subradiatus is a prior name for N. polyzonata. We propose Hirticrusta gen. nov. typified by H. subradiata segregated from Neofomitella, and we erected H. amazonica sp. nov. for the unidentified species. Hirticrusta is characterized by annual to biennial and sessile basidiocarps, semicircular to dimidiate pileus, velutinous to tomentose hairs on pileus surface, buff to brown context with a crustose layer indicated by a dark brown line forming a longitudinal section below the superficial hairs, a trimitic hyphal system, crustose layer composed of parallel and densely arranged brown hyphae and cylindrical basidiospores. The new species, H. amazonica is distinguishable from other polypores by downy and long tomentum on the pileus surface (up to 20 mm thick), brown context with a dark brown layer below the tomentum and round pores (5–7/mm).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号