首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2745篇
  免费   99篇
  国内免费   77篇
  2023年   78篇
  2022年   108篇
  2021年   154篇
  2020年   86篇
  2019年   88篇
  2018年   91篇
  2017年   37篇
  2016年   37篇
  2015年   57篇
  2014年   115篇
  2013年   123篇
  2012年   73篇
  2011年   75篇
  2010年   59篇
  2009年   85篇
  2008年   119篇
  2007年   97篇
  2006年   93篇
  2005年   57篇
  2004年   72篇
  2003年   66篇
  2002年   60篇
  2001年   61篇
  2000年   66篇
  1999年   64篇
  1998年   43篇
  1997年   78篇
  1996年   64篇
  1995年   68篇
  1994年   65篇
  1993年   60篇
  1992年   59篇
  1991年   38篇
  1990年   49篇
  1989年   52篇
  1988年   36篇
  1987年   33篇
  1986年   30篇
  1985年   27篇
  1984年   33篇
  1983年   23篇
  1982年   28篇
  1981年   25篇
  1980年   12篇
  1979年   10篇
  1977年   8篇
  1976年   12篇
  1972年   11篇
  1971年   7篇
  1970年   7篇
排序方式: 共有2921条查询结果,搜索用时 78 毫秒
111.
Extracellular levels of dopamine (DA) and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), in the striatum and frontoparietal (sensorimotor) cortex in halothane-anesthetized rats were analyzed simultaneously using in vivo microdialysis. Basal DA levels, measured from the microdialysis perfusate, were 6.4 +/- 0.8 nM (n = 15) in the striatum and 0.9 +/- 0.1 nM (n = 15) in the frontoparietal cortex. Subcutaneous injections of d-amphetamine (2 mg/kg) increased DA levels 10-fold in the striatum and fivefold in the cortex. Injections of substance P (0.07 nmol/0.2 microliters) into the substantia nigra pars reticulata (SNR) increased DA and DOPAC levels approximately 30% in the ipsilateral striatum and approximately 50% in the ipsilateral frontoparietal cortex. Injections of neurokinin A (0.09 nmol/0.2 microliter) into the SNR increased DA and DOPAC levels approximately 30% in the ipsilateral striatum but did not significantly affect DA levels in the ipsilateral frontoparietal cortex, although DOPAC levels were increased by approximately 50%. It is suggested that striatal and cortical DA release is regulated differently by nigral substance P and neurokinin A terminals.  相似文献   
112.
In synaptosomal membranes from rat brain cortex, in the presence of 150 mM NaCl, the opioid antagonist [3H]naltrexone bound to two populations of receptor sites with affinities of 0.27 and 4.3 nM, respectively. Guanosine-5'-(3-thiotriphosphate) had little modulating effect and did not alter the biphasic nature of ligand binding. On the other hand, receptor-selective opioids differentially inhibited the two binding components of [3H]naltrexone. As shown by nonlinear least-squares analysis, the mu opioids Tyr-D-Ala-Gly-(Me)Phe-Gly-ol or sufentanil abolished high-affinity [3H]naltrexone binding, whereas the delta-selective ligands [D-Pen2,D-Pen5]enkephalin, ICI 174,864, and oxymorphindole inhibited and eventually eliminated the low-affinity component in a concentration-dependent manner. These results indicate that, in contrast to the guanine nucleotide-sensitive biphasic binding of opioid-alkaloid agonists, the heterogeneity of naltrexone binding in brain membranes reflects ligand interaction with different opioid-receptor types.  相似文献   
113.
Robustness of G Proteins in Alzheimer''s Disease: An Immunoblot Study   总被引:4,自引:3,他引:1  
Many of the neurotransmitter systems that are altered in senile dementia of the Alzheimer type are known to mediate their effects via G proteins, yet the integrity of guanine nucleotide-binding proteins (G proteins) in Alzheimer's diseased brains has received minimal investigation. The aim of this study was to establish whether the level of G alpha subunits of five G proteins was altered in Alzheimer's disease. We used immunoblotting (Western blotting) to compare the amounts of Gi1, Gi2, GsH (heavy molecular weight), GsL (light molecular weight), and Go in the frontal cortex and hippocampus, two regions severely affected by the disease, and the cerebellum, which is less severely affected. The number of senile plaques was also quantified. We report that there was no significant difference in the level of these G alpha subunits between Alzheimer's diseased and age-matched postmortem brains. These results suggest that alterations in the amount of G protein alpha subunits are not a feature of Alzheimer's disease.  相似文献   
114.
Primary cultured neurons were fractionated using sucrose density gradients. The activities of four sialyltransferases (GM3, GD3, GD1a, and GT1a synthase) involved in ganglioside biosynthesis were assayed in the collected fractions. The distribution of GM3 synthase coincided with that of mannosidase II, an enzyme assumed to be a cis-Golgi marker. Both enzymes were mainly associated with the more dense fraction. GD1a and GT1a synthase activities, on the other hand, were mainly recovered in the less dense fraction. Moreover, they were colocalized with thiamine pyrophosphatase, an enzyme assumed to be a marker of the late Golgi (trans-Golgi and trans-Golgi network). GD3 synthase activity was equally distributed between both fractions. These results are integrated in a model of ganglioside biosynthesis.  相似文献   
115.
Hyperammonemia has been suggested to induce enhanced cerebral cortex ammonia uptake, subsequent glutamine synthesis and accumulation, and finally net glutamine release into the blood stream, but this has never been confirmed in liver insufficiency models. Therefore, cerebral cortex ammonia- and glutamine-related metabolism was studied during liver insufficiency-induced hyperammonemia by measuring plasma flow and venous-arterial concentration differences of ammonia and amino acids across the cerebral cortex (enabling estimation of net metabolite exchange), 1 day after portacaval shunting and 2, 4, and 6 h after hepatic artery ligation (or in controls). The intra-organ effects were investigated by measuring cerebral cortex tissue ammonia and amino acids 6 h after liver ischemia induction or in controls. Arterial ammonia and glutamine increased in portacaval-shunted rats versus controls, and further increased during liver ischemia. Cerebral cortex net ammonia uptake, observed in portacaval-shunted rats, increased progressively during liver ischemia, but net glutamine release was only observed after 6 h of liver ischemia. Cerebral cortex tissue glutamine, gamma-aminobutyric acid, most other amino acids, and ammonia levels were increased during liver ischemia. Glutamate was equally decreased in portacaval-shunted and liver-ischemia rats. The observed net cerebral cortex ammonia uptake, cerebral cortex tissue ammonia and glutamine accumulation, and finally glutamine release into the blood suggest that the rat cerebral cortex initially contributes to net ammonia removal from the blood during liver insufficiency-induced hyperammonemia by augmenting tissue glutamine and ammonia pools, and later by net glutamine release into the blood. The changes in cerebral cortex glutamate and gamma-aminobutyric acid could be related to altered ammonia metabolism.  相似文献   
116.
Glibenclamide closes an ATP-sensitive K+ channel (K-ATP channel) by interaction with the sulfonylurea receptor in the plasma membrane of pancreatic B cells and thereby initiates insulin release. Previous studies demonstrated that the Mg2+ complex of ATP decreases glibenclamide binding to the sulfonylurea receptor from pancreatic islets. The aim of the present study was to examine the effect of adenine and guanine nucleotides on binding of sulfonyl-ureas to the cerebral sulfonylurea receptor. For this purpose, binding properties of the particulate and solubilized site from rat or pig cerebral cortex were analyzed. Maximum recovery of receptors in detergent extracts amounted to 40-50%. Specific binding of [3H]glibenclamide to the solubilized receptors corresponded well to specific binding to microsomes. In microsomes and detergent extracts, the Mg2+ complexes of ATP, ADP, GTP, and GDP inhibited binding of [3H]glibenclamide. These effects were not observed in the absence of Mg2+. In detergent extracts, Mg-ATP (300 microM) reduced the number of high-affinity sites for [3H]-glibenclamide by 52% and increased the dissociation constant for [3H]glibenclamide by eightfold; Mg-ATP was half-maximally effective at 41 microM. Alkaline phosphatase accelerated the reversal of Mg-ATP-induced inhibition of [3H]glibenclamide binding. The data suggest similar control of the sulfonylurea receptor from brain and pancreatic islets by protein phosphorylation.  相似文献   
117.
We previously reported that lithium, in the presence of acetylcholine, increased accumulations of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate in brain cortex slices from the guinea pig, rabbit, rat, and mouse. In the mouse and rat, the Li(+)-induced increases required supplementation of the medium with inositol. This probably relates to the following facts: (a) Brain cortices of the mouse and rat contain in vivo concentrations of inositol half of that of the guinea pig. (b) Incubated rat brain cortex slices are depleted of inositol by 80%. (c) The slices require 10 mM inositol supplementation to restore in vivo concentrations. We now show that in monkey brain cortex slices, therapeutic concentrations of Li+ increase accumulation of inositol 1,4,5-trisphosphate. The inositol 1,3,4,5-tetrakisphosphate level is not increased. Neither inositol nor an agonist is required. The same effects are seen whether inositol 1,4,5-trisphosphate is quantified by the [3H]inositol prelabeling technique or by mass assay, although mass includes a pool of inositol 1,4,5-trisphosphate that is metabolically inactive. Thus, in a therapeutically relevant model for humans, Li+ increases inositol 1,4,5-trisphosphate levels in brain cortex slices, as was previously seen in lower mammals at non-rate-limiting concentrations of inositol.  相似文献   
118.
Gamma-aminobutyric acidA/benzodiazepine receptor binding sites and the N-methyl-D-aspartate subclass of glutamate receptor sites were assessed in synaptic plasma membrane homogenates of cerebral cortex tissue obtained at autopsy from cirrhotic and noncirrhotic alcoholic patients and matched control subjects. The alcoholic patients consumed an average of greater than 80 g of ethanol/day, the control subjects less than 20 g/day. Postmortem delays up to approximately 100 h caused no significant loss of any of the binding sites; the patient and subject groups were closely matched for age. The affinities (KD) of the receptor sites did not differ between the patient and subject groups, nor between cortical regions. Using three different radioligands ([3H]muscimol, [3H]flunitrazepam, and [3H]diazepam), the gamma-aminobutyric acidA/benzodiazepine receptor complex was found to have greater density (Bmax) in superior frontal gyrus in alcoholic patients (which selectively shows morphological change in alcoholic patients), but was unchanged in motor cortex. Alcoholic patients with cirrhosis had much less pronounced changes. The density of the N-methyl-D-aspartate subclass of glutamate receptors, assessed with [3H]MK-801, did not vary across patient and subject groups.  相似文献   
119.
alpha-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) is a selective ligand for an excitatory amino acid receptor subtype in mammalian brain. We have solubilized an AMPA binding protein from bovine brain membranes with 1% Triton X-100 in 0.5 M phosphate buffer and 20% glycerol at 37 degrees C and purified the stable binding sites using a series of chromatographic steps. Scatchard analysis of the purified preparation showed a curvilinear plot with dissociation constants of 10.6 and 323 nM and Bmax values of 670 and 1,073 pmol/mg of protein for the high- and low-affinity sites, respectively. Inhibition constants for several excitatory amino acid analogues were similar to those obtained for other membrane and solubilized preparations. Gel filtration of the soluble AMPA binding protein showed a single peak of [3H]AMPA binding activity at Mr approximately 500,000. With sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the purified AMPA binding protein showed a single major band at Mr = 110,000. Previously, we have shown that a monoclonal antibody (KAR-B1) against a frog brain kainate binding protein selectively recognizes an unknown protein in mammalian brain migrating at Mr approximately 100,000. We now show that this antibody recognizes the major component of the purified AMPA binding protein, supporting a structural similarity between the frog brain kainate binding protein and the mammalian AMPA binding protein.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号