首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1884篇
  免费   56篇
  国内免费   47篇
  2023年   15篇
  2022年   31篇
  2021年   34篇
  2020年   27篇
  2019年   28篇
  2018年   35篇
  2017年   29篇
  2016年   38篇
  2015年   59篇
  2014年   146篇
  2013年   267篇
  2012年   160篇
  2011年   156篇
  2010年   123篇
  2009年   87篇
  2008年   83篇
  2007年   79篇
  2006年   77篇
  2005年   61篇
  2004年   47篇
  2003年   52篇
  2002年   25篇
  2001年   21篇
  2000年   16篇
  1999年   26篇
  1998年   22篇
  1997年   27篇
  1996年   22篇
  1995年   20篇
  1994年   11篇
  1993年   14篇
  1992年   10篇
  1991年   9篇
  1990年   14篇
  1989年   8篇
  1988年   8篇
  1987年   7篇
  1986年   12篇
  1985年   7篇
  1984年   13篇
  1983年   5篇
  1982年   11篇
  1981年   3篇
  1980年   9篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1972年   4篇
  1970年   3篇
排序方式: 共有1987条查询结果,搜索用时 31 毫秒
161.
In order to investigate the microtubule-associated intracellular trafficking of the NH2-terminal cellular prion protein (PrPC) fragment [Biochem. Biophys. Res. Commun. 313 (2004) 818], we performed a real-time imaging of fluorescent PrPC (GFP-PrPC) in living cells. Such GFP-PrPC exhibited an anterograde movement towards the direction of plasma membranes at a speed of 140-180 nm/s, and a retrograde movement inwardly at a speed of 1.0-1.2 microm/s. The anterograde and retrograde movements of GFP-PrPC were blocked by a kinesin family inhibitor (AMP-PNP) and a dynein family inhibitor (vanadate), respectively. Furthermore, anti-kinesin antibody (alpha-kinesin) blocked its anterograde motility, whereas anti-dynein antibody (alpha-dynein) blocked its retrograde motility. These data suggested the kinesin family-driven anterograde and the dynein-driven retrograde movements of GFP-PrPC. Mapping of the interacting domains of PrPC identified amino acid residues indispensable for interactions with kinesin family: NH2-terminal mouse (Mo) residues 53-91 and dynein: NH2-terminal Mo residues 23-33, respectively. Our findings argue that the discrete N-terminal amino acid residues are indispensable for the anterograde and retrograde intracellular movements of PrPC.  相似文献   
162.
163.
Lipids seem to have various roles in cellular senescence. We found that cardiolipin very sensitively inhibits growth of normal human fibroblasts, whereas other phospholipids do not at 100 times higher concentrations. Growth arrested cells showed morphology similar to those of normally senesced cells and strongly induced senescence-associated beta-galactosidase. Senescence markers such as the p21(waf1/sdi-1), fibronectin, and collagenase-I genes were significantly upregulated by cardiolipin. In addition, caldiolipin significantly increased in normally senesced human fibroblasts leaving other phospholipids unaltered. These results suggest that accumulation of cardiolipin is one of the causes for replicative senescence.  相似文献   
164.
In vitro angiogenesis assays have shown that tubulogenesis of endothelial cells within biogels, like collagen or fibrin gels, only appears for a critical range of experimental parameter values. These experiments have enabled us to develop and validate a theoretical model in which mechanical interactions of endothelial cells with extracellular matrix influence both active cell migration--haptotaxis--and cellular traction forces. Depending on the number of cells, cell motility and biogel rheological properties, various 2D endothelial patterns can be generated, from non-connected stripe patterns to fully connected networks, which mimic the spatial organization of capillary structures. The model quantitatively and qualitatively reproduces the range of critical values of cell densities and fibrin concentrations for which these cell networks are experimentally observed. We illustrate how cell motility is associated to the self-enhancement of the local traction fields exerted within the biogel in order to produce a pre-patterning of this matrix and subsequent formation of tubular structures, above critical thresholds corresponding to bifurcation points of the mathematical model. The dynamics of this morphogenetic process is discussed in the light of videomicroscopy time lapse sequences of endothelial cells (EAhy926 line) in fibrin gels. Our modeling approach also explains how the progressive appearance and morphology of the cellular networks are modified by gradients of extracellular matrix thickness.  相似文献   
165.
The molecular mechanisms that drive mammalian cells to the development of cancer are the subject of intense biochemical, genetic and medical studies. But for the present, there is no comprehensive model that might serve as a general framework for the interpretation of experimental data. This paper is an attempt to create a conceptual model of the mechanism of the developing tumorigenic phenotype in mammalian cells, defined as having high genomic instability and proliferative activity. The basic statement in the model is that mutations acquired by tumor cells are not caused directly by external DNA damaging agents, but instead are produced by the cell itself as an output of a Mutator Response similar to the bacterial "SOS response" and characterized by the initiation of error-prone cell cycle progression and an elevated rate of mutation. This response may be induced in arrested mammalian cells by intracellular and extracellular proliferative signals combined with blocked apoptosis. The mutant cells originated by this response are subjected to natural selection via apoptosis and turnover. This selection process favors the survival of cells with high proliferative activity and the suppression of apoptosis resulting in the long run in the appearance of immortalized cells with high proliferative activity. Either a sustained stressful environment accompanied by continuing apoptotic cell death, or replicative senescence, provides conditions suitable for activation of the Mutator Response, namely the emergence of arrested cells with blocked apoptosis and the induction of proliferative signal. It also accelerates the selection process by providing continuing cell turnover. The proposed mechanism is described at the level of involved metabolic pathways and proteins and substantiated by the related experimental data available in the literature.  相似文献   
166.
A cellular automata model to simulate penicillin fed-batch fermentation process(CAPFM)was established in this study,based on a morphologically structured dynamic penicillin production model,that is in turn based on the growth mechanism of penicillin producing microorganisms and the characteristics of penicillin fed-batch fermentation.CAPFM uses the three-dimensional cellular automata as a growth space,and a Moore-type neighborhood as the cellular neighborhood.The transition roles of CAPFM are designed based on mechanical and structural kinetic models of penicillin batch-fed fermentation processes.Every cell of CAPFM represents a single or specific number of penicillin producing microorganisms,and has various state.The simulation experimental results show that CAPFM replicates the evolutionary behavior of penicillin batch-fed fermentation processes described by the structured penicillin production kinetic model accordingly.  相似文献   
167.
In previous notes, we have described both mathematical properties of potential (n-switches) and potential-Hamiltonian (Liénard systems) continuous differential systems, and also biological applications, especially those concerning primitive cyclic RNAs related to the genetic code. In the present note, we give a general definition of a potential automaton, and we show that a discrete Hopfield-like system already introduced by Goles et al. is a good candidate for such a potential automaton: it has a Lyapunov functional that decreases on its trajectories and whose time derivative is just its discrete velocity. Then we apply this new notion of potential automaton to the genetic code. We show in particular that the consideration of only physicochemical properties of amino-acids, like their molecular weight, hydrophobicity and ability to create hydrogen bonds suffices to build a potential decreasing on trajectories corresponding to the synonymy classes of the genetic code. Such an 'a minima' construction reinforces the classical stereochemical hypothesis about the origin of the genetic code and authorizes new views about the optimality of its synonymy classes.  相似文献   
168.
The bowman-birk type trypsin inhibitors accumulate in high concentration in legume and cereal seeds, especially during seed maturation and are considered to be involved in insect tolerance. The 5′ flanking sequences of the trypsin inhibitor was isolated from cowpea genomic DNA using anchor PCR. Analysis of sequences showed presence of seed specific RY elements and also other elements associated with seed development such as abscisic acid responsive elements (ABA responsive elements; ABRE) and dehydration responsive elements (DRE). Spatial and temporal control of the promoter driven expression pattern was analyzed using gus as reporter. Expression was found to occur both in embryo and endosperm; starting from torpedo stage of embryogenesis and continuing till the stage of final maturation i.e. bent cotyledon stage. Additional expression analyses showed that the promoter actually drives expression in tissues like leaves, roots, stipules, etc., but followed a specific pattern. Comparative analysis of expression in seeds and other organs indicated that the promoter driven expression is in response to cellular maturation.  相似文献   
169.
A group of SARS-like coronaviruses(SL-CoV)have been identified in horseshoe bats.Despite SL-CoVs and SARS-CoV share identical genome structure and high-level sequence similarity,SL-CoV does not bind to the same cellular receptor as for SARS-CoV and the N-terminus of the S proteins only share 64%amino acid identity,suggesting there are fundamental differences between these two groups of coronaviruses.To gain insight into the basis of this difference,we established a recombinant adenovirus system expressing t...  相似文献   
170.
Secretory vesicles express a periodic multimodal size distribution. The successive modes are integral multiples of the smallest mode (G1). The vesicle content ranges from macromolecules (proteins, mucopolysaccharides and hormones) to low molecular weight molecules (neurotransmitters). A steady-state model has been developed to emulate a mechanism for the introduction of vesicles of monomer size, which grow by a unit addition mechanism, G1+GnGn+1 which, at a later stage are eliminated from the system. We describe a model of growth and elimination transition rates which adequately illustrates the distributions of vesicle population size at steady-state and upon elimination. Consequently, prediction of normal behavior and pathological perturbations is feasible. Careful analysis of spontaneous secretion, as compared to short burst-induced secretion, suggests that the basic character-code for reliable communication should be within a range of only 8-10 vesicles’ burst which may serve as a yes/no message.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号