首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1884篇
  免费   56篇
  国内免费   47篇
  2023年   15篇
  2022年   31篇
  2021年   34篇
  2020年   27篇
  2019年   28篇
  2018年   35篇
  2017年   29篇
  2016年   38篇
  2015年   59篇
  2014年   146篇
  2013年   267篇
  2012年   160篇
  2011年   156篇
  2010年   123篇
  2009年   87篇
  2008年   83篇
  2007年   79篇
  2006年   77篇
  2005年   61篇
  2004年   47篇
  2003年   52篇
  2002年   25篇
  2001年   21篇
  2000年   16篇
  1999年   26篇
  1998年   22篇
  1997年   27篇
  1996年   22篇
  1995年   20篇
  1994年   11篇
  1993年   14篇
  1992年   10篇
  1991年   9篇
  1990年   14篇
  1989年   8篇
  1988年   8篇
  1987年   7篇
  1986年   12篇
  1985年   7篇
  1984年   13篇
  1983年   5篇
  1982年   11篇
  1981年   3篇
  1980年   9篇
  1979年   6篇
  1978年   5篇
  1977年   4篇
  1976年   4篇
  1972年   4篇
  1970年   3篇
排序方式: 共有1987条查询结果,搜索用时 31 毫秒
151.
Hepatitis B viruses (HBVs) show instantaneous and high-ratio mutations when they are replicated, some sorts of which significantly affect the efficiency of virus replication through enhancing or depressing the viral replication, while others have no influence at all. The mechanism of gene expression is closely correlated with its gene sequence. With the rapid increase in the number of newly found sequences entering into data banks, it is highly desirable to develop an automated method for simulating the gene regulating function. The establishment of such a predictor will no doubt expedite the process of prioritizing genes and proteins identified by genomics efforts as potential molecular targets for drug design. Based on the power of cellular automata (CA) in treating complex systems with simple rules, a novel method to present HBV gene image has been introduced. The results show that the images thus obtained can very efficiently simulate the effects of the gene missense mutation on the virus replication. It is anticipated that CA may also serve as a useful vehicle for many other studies on complicated biological systems.  相似文献   
152.
The geometry of the lattice used in ecological modeling is important because of the local nature of ecological interactions. The latter can generate complex behavior such as criticality (scale-invariance). In this work, we implement two slightly different forest disturbance models on three lattices, each with square, triangular and hexagonal symmetry, in order to study the effect of geometry. We calculate the density distribution of gaps in a forest and find bumps in the distribution at sizes that depend on lattice geometry. Similar bumps were observed in real data but remained unexplainable. We suggest that these bumps provide information about the geometry and scale of ecological interactions. We also found an effect of geometry on the conditions under which criticality appears in model forests. These conditions appear to be more biologically realistic, and also linked to the likelihood of local disturbance propagation. The scaling exponent of the gap-size distribution, however, was found to be independent of both model and geometry, a hallmark of universality.  相似文献   
153.
Upon stimulation of cells with interleukin-1 (IL-1) the IL-1 receptor type I (IL-1RI) associated kinase-1 (IRAK-1) transiently associates to and dissociates from the IL-1RI and thereafter translocates into the nucleus. Here we show that nuclear translocation of IRAK-1 depends on its kinase activity since translocation was not observed in EL-4 cells overexpressing a kinase negative IRAK-1 mutant (EL-4(IRAK-1-K239S)). IRAK-1 itself, an endogenous substrate with an apparent molecular weight of 24kDa (p24), and exogenous substrates like histone and myelin basic protein are phosphorylated by nuclear located IRAK-1. Phosphorylation of p24 cannot be detected in EL-4(IRAK-1-K239S) cells. IL-1-dependent recruitment of IRAK-1 to the IL-1RI and subsequent phosphorylation of IRAK-1 is a prerequisite for nuclear translocation of IRAK-1. It is therefore concluded that intracellular localization of IRAK-1 depends on its kinase activity and that IRAK-1 may also function as a kinase in the nucleus as shown by a new putative endogenous substrate.  相似文献   
154.
We report here a novel carrier of quantum dots (QDs) for intracellular labeling. Monodisperse hybrid nanoparticles (38 nm in diameter) of QDs were prepared by simple mixing with nanogels of cholesterol-bearing pullulan (CHP) modified with amino groups (CHPNH2). The CHPNH2-QD nanoparticles were effectively internalized into the various human cells examined. The efficiency of cellular uptake was much higher than that of a conventional carrier, cationic liposome. These hybrid nanoparticles could be a promising fluorescent probe for bioimaging.  相似文献   
155.
156.
The deposition of beta-amyloid peptides (A beta42 and A beta40) in neuritic plaques is one of the hallmarks of Alzheimer's disease (AD). A beta peptides are derived from sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. BACE-1 has been shown to be the major beta-secretase and is a primary therapeutic target for AD. In this article, two novel assays for the characterization of BACE-1 inhibitors are reported. The first is a sensitive 96-well HPLC biochemical assay that uses a unique substrate containing an optimized peptide cleavage sequence, NFEV, spanning from the P2-P2' positions This substrate was processed by BACE-1 approximately 10 times more efficiently than was the widely used substrate containing the Swedish (NLDA) sequence. As a result, the concentration of the enzyme required for the assay can be as low as 100 pM, permitting the evaluation of inhibitors with subnanomolar potency. The assay has also been applied to related aspartyl proteases such as cathepsin D (Cat D) and BACE-2. The second assay is a homogeneous electrochemiluminescence assay for the evaluation of BACE-1 inhibition in cultured cells that assesses the level of secreted amyloid EV40_NF from HEK293T cells stably transfected with APP containing the novel NFEV sequence. To illustrate the use of these assays, the properties of a potent, cell-active BACE-1 inhibitor are described.  相似文献   
157.
Direct targeting to the cytoplasm and nucleus using protein transduction domains (PTD) has been described to be efficient but non-cell-type-specific, and only has clinical relevance when the molecule is active exclusively in the diseased cell. The use of PTDs is an attractive mechanism to improve drug delivery. In this work, we designed recombinant proteins that contain epidermal growth factor as ligand to render uptake target cell-specific. We evaluated the potential of several PTDs to induce the cytosolic uptake of the catalytic domain of diphtheria toxin by measuring cytotoxicity. Although PTD-dependent membrane transfer is very low, the proteins exhibited concentration-dependent cytotoxic activity. Higher binding at 4 degrees C compared to 37 degrees C suggests that uptake by the PTDs MTS and TLM occurs via an endocytic pathway. Non-specific binding is predominantly a function of the PTD and greatly increases by substitution of a non-polar glycine with a negatively charged glutamate in the PTD HA2.  相似文献   
158.
Reversible lipid attachment was investigated as a means to deliver small peptides into cells. Two labile straight chain alkyl motifs were developed: a cysteine dodecane disulfide (Cdd) building block and a tyrosine- or serine-myristate ester. Both moieties are cleaved on cell internalization and are compatible with Fmoc solid phase peptide synthesis. A series of fluorophore-labeled peptides that varied in lipophilic content, net charge, and charge distribution were synthesized. The peptides were screened for cellular uptake efficiency as monitored by fluorescence microscopy. Effective peptide transport is based on a distributed net positive charge introduced as lysine residues at the C and/or N terminus of the peptide and the presence of a hydrophobic domain exhibiting an estimated log P4.0. The incorporation of labile lipid motifs into peptides enhances lipophilic character of the peptides and contributes to cellular uptake with minimal alteration to the native sequence.  相似文献   
159.
The remarkable regenerative capacity displayed by plants and various vertebrates, such as amphibians, is largely based on the capability of somatic cells to undergo dedifferentiation. In this process, mature cells reverse their state of differentiation and acquire pluripotentiality--a process preceding not only reentry into the cell cycle but also a commitment for cell death or trans- or redifferentiation. Recent studies provide a new perspective on cellular dedifferentiation, establishing chromatin reorganization as its fundamental theme.  相似文献   
160.
Phospholipase D (PLD) activity in mammalian cells has been associated with cell proliferation and differentiation. Here, we investigated the expression of PLD during differentiation of pluripotent embryonal carcinoma cells (P19) into astrocytes and neurons. Retinoic acid (RA)-induced differentiation increased PLD1 and PLD2 mRNA levels and PLD activity that was responsive to phorbol myristate acetate. Various agonists of membrane receptors activated PLD in RA-differentiated cells. Glutamate was a potent activator of PLD in neurons but not in astrocytes, whereas noradrenaline and carbachol increased PLD activity only in astrocytes. P19 neurons but not astrocytes released glutamate in response to a depolarizing stimulus, confirming the glutamatergic phenotype of these neurons. These results indicate upregulation of PLD gene expression associated with RA-induced neural differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号