首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16084篇
  免费   413篇
  国内免费   197篇
  16694篇
  2023年   145篇
  2022年   118篇
  2021年   183篇
  2020年   221篇
  2019年   244篇
  2018年   246篇
  2017年   190篇
  2016年   232篇
  2015年   418篇
  2014年   1198篇
  2013年   1092篇
  2012年   1057篇
  2011年   1337篇
  2010年   1059篇
  2009年   671篇
  2008年   722篇
  2007年   738篇
  2006年   659篇
  2005年   534篇
  2004年   567篇
  2003年   427篇
  2002年   289篇
  2001年   176篇
  2000年   199篇
  1999年   268篇
  1998年   243篇
  1997年   208篇
  1996年   204篇
  1995年   209篇
  1994年   242篇
  1993年   179篇
  1992年   217篇
  1991年   176篇
  1990年   155篇
  1989年   162篇
  1988年   165篇
  1987年   146篇
  1986年   130篇
  1985年   134篇
  1984年   160篇
  1983年   96篇
  1982年   156篇
  1981年   117篇
  1980年   136篇
  1979年   128篇
  1978年   80篇
  1977年   87篇
  1976年   52篇
  1972年   24篇
  1971年   22篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
31.
Summary Dark grown coleoptile segments were floated on solutions of IAA alone and of IAA and the secretion inhibitors cytochalasin and monensin. The secretion inhibitors prevented normal elongation of the tissue segments, the monensin inhibition being virtually complete while cytochalasin gave a 40% reduction over the first six hours with little further further elongation in the following 18 hours. Vesicle production was assessed in outer epidermal cells after 6 hours of IAA-stimulated elongation using the vesicle accumulation method following a cytochalasin-block of vesicle transport. The results were compared with the area of plasma membrane required to enable cell elongation to proceed at the observed rate. The area of vesicle membrane delivered to the cell surface exceeded this requirement to such an extent that at least 65% of the delivered membrane must be recycled back into the cytoplasm. Expressed in terms of the whole cell, the plasma membrane turnover rate was found to be once every 200 minutes. It is concluded that limitation of elongation by secretion inhibitors is more likely to reflect a requirement for the vesicle contents than the vesicle membrane. These results are compared with those obtained from other secretory systems using a similar approach.Abbreviations IAA indole acetic acid - DMSO dimethyl sulphoxide - D dictyosome - ER endoplasmic reticulum - V vesicle  相似文献   
32.
Summary We report on the size distribution of clones marked by mitotic recombination induced by several different doses of X-rays applied to 72 h oldDrosophila larvae. The results indicate that the radiation significantly reduces the number of cells which undergo normal proliferation in the imaginal wing disc. We estimate that 1000 r reduces by 40–60% the number of cells capable of making a normal contribution to the development of the adult wing. Part of this reduction is due to severe curtailment in the proliferative ability of cells which nevertheless remain capable of adult differentiation; this effect is possibly due to radiation-induced aneuploidy. Cytological evidence suggests that immediate cell death also occurs as a result of radiation doses as low as 100 r. The surviving cells are stimulated to undergo additional proliferation in response to the X-ray damage so that the result is the differentiation of a normal wing.  相似文献   
33.
R. D. Preston 《Planta》1988,174(1):67-74
A brief review is given of the changing views over the years, as knowledge of wall structure has developed, concerning the mechanism whereby cellulose chains may be oriented. This leads to an examination of current concepts, particularly those concerning microtubules. It is shown that none of the mechanisms suggested whereby microtubules might cause orientation of cellulose microfibrils is consistent with the known range of molecular architectures found in plant cell walls. It is further concluded that any mechanism which necessitates an indissoluble link between the plasmalemma and the cellulose-synthesising complex at the tip of a microfibril is unacceptable. A new proposal is presented in which it is speculated that both microtubules and microfibrils are oriented by a mechanism separate from both. It is shown that if two vectors are contemplated, one parallel to cell length and one at right angles, and a sensor exists on the plasmalemma surface which responds to changes in the vectors, then all known wall structures may be explained. The possible nature of the vectors and the sensor are considered.  相似文献   
34.
Summary Pedigree analyses of individual yeast cells recovering from DNA damage were performed and time intervals between morphological landmark events during the cell cycle (bud emergence and cell separation), were recorded for three generations. The associated nuclear behavior was monitored with the aid of DAPI staining. The following observations were made: (1) All agents tested (X-rays, MMS, EMS, MNNG, nitrous acid) delayed the first bud emergence after treatment, which indicates inhibition of the initiation of DNA replication. (2) Cells that survived X-irradiation progressed further through the cell cycle in a similar way to control cells. (3) Progress of chemically treated cells became extremely asynchronous because surviving cells stayed undivided for periods of varying length. (4) Prolongation of the time between bud emergence and cell separation was most pronounced for cells treated with the alkylating agents MMS and EMS. This is interpreted as retardation of ongoing DNA synthesis by persisting DNA adducts. (5) Cell cycle prolongation in the second and third generation after treatment was observed only with MMS treated cells. (6) In all experiments, individual cells of uniformly treated populations exhibited highly variable responses.Abbreviations DAPI 4,6-diamidino-2-phenyl-indole - EMS ethyl methanesulfonate - MMS methyl methanesulfonate - MNNG N-methyl-N-nitro-N-nitrosoguanidine  相似文献   
35.
The fundamental problems that face us in the development of suitable assay systems for the detection of potentially aneugenic (aneuploidy-inducing) chemicals include: (a) the diversity of cellular targets and mechanisms where perturbations of structure and function may give rise to changes in chromosome number, and (b) the phylogenetic differences that exist between species in their mechanism and kinetics of cell division and their metabolic profiles. A diverse range of assay systems have been developed, which have been shown to have potential for use in the detection of either changes in chromosome number or of perturbations of the events which may be causal in the induction of aneuploidy.

Chromosome number changes may be detected cytologically by karyotypic analysis, or by the use of specialised strains in which aneuploid progeny may be observed due to phenotypic differences with aneuploid parental cells or whole organisms. Techniques for the detection of cellular target modifications range from in vitro studies of tubulin polymerisation to observations of the behaviour of various cellular organelles and their fidelity of action during the division cycle.

The diversity of mechanisms which may give rise to aneuploidy and the qualitative relevance of events observed in experimental organisms compared to man make it unlikely that the detection and risk assessment of the aneugenic activity of chemicals will be possible using a single assay system. Optimal screening and assessment procedures will thus be dependent upon the selection of an appropriate battery of predictive tests for the measurement of the potentially damaging effects of aneuploidy induction.  相似文献   

36.
Jürgen Voigt  Petra Münzner 《Planta》1987,172(4):463-472
Cultures of the unicellular green alga Chlamydomonas reinhardii can be synchronized by light/dark cycling not only under photoautotrophic but also under mixotrophic growth conditions. We observed that cultures synchronized in the presence of acetate continue to divide synchronously for one cell-cycle period when transferred to heterotrophic growth conditions. This finding enabled us to investigate the differential effects of light on cell growth and cell division. When cells were exposed to continuous light at the beginning of the growth period they entered the division phase earlier than dark-grown cells as a consequence of an increased growth rate. Illumination at the end of the growth period, however, caused a considerable delay in cell division and an extended growth period. The light-induced delay in cell division was also observed in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU), an inhibitor of photosystem II. This finding demonstrates that cell division is directly influenced by a light/dard-responsive cell-cycle switch rather than by light/dark-dependent changes in energy metabolism. The importance of this light/dark control to the regulation of the Chlamydomonas cell cycle was investigated in comparison with other control mechanisms (size control, time control). We found that the light/dard-responsive cell-cycle switch regulates the transition from G1-to S-phase. This control mechanism is effective in cells which have attained the commitment to at least one round of DNA replication and division but have not attained the maximal cell mass which initiates cell division in the light.Abbreviations dCTP deoxycytidine 5-triphosphate - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea  相似文献   
37.
Immuno-gold labelling using a monoclonal antibody (PCBC3) with a primary specificity for -L-arabinofuranosyl residues was used to locate these residues in pollen tubes of Nicotiana alata grown in vivo. The antibody bound to the outer fibrillar layer of the pollen-tube wall: the inner, non-fibrillar wall layer was not labelled. Cytoplasmic vesicles (0.2 m diameter) were also labelled. The antibody may bind to an arabinan in the pollen-tube wall.  相似文献   
38.
K. A. Pyke  R. M. Leech 《Planta》1987,170(3):416-420
Chloroplast number per cell and mesophyll cell plan area were determined in populations of separated cells from the primary leaves of different wheat species representing three levels of ploidy. Mean chloroplast number per cell increases with ploidy level as mean cell size increases. But in addition the analysis of individual cells clearly shows that cells of a similar size but from species of different ploidies have similar numbers of chloroplasts. We conclude that the number of chloroplasts within a cell is closely correlated (P<0.001) with the size of the cell and this relationship is consistent for species of different ploidies over a wide range of cell sizes. These results are discussed in relation to the hypothesis that chloroplast number in leaf mesophyll cells is determined by the size of the cell.  相似文献   
39.
S. Abel  K. Glund 《Planta》1987,172(1):71-78
A ribonuclease which was previously shown to be located in isolated vacuoles from suspension-cultured cells of tomato (Lycopersicon esculentum L.; Abel and Glund 1986, Physiol. Plant. 66, 79–86) has been purified to near homogeneity. Purification was up to 55000-fold with a yield of about 20%. The vacuolar origin of the protein was evidenced by comparing its electrophoretic mobility, isoelectric point, pH-optimum for activity and other properties with that of the RNA-degrading activity present in isolated vacuoles. The molecular weight of the native single polypeptide chain was estimated at 17500 and 20300 by gel filtration and sedimentation analysis, respectively. The enzyme hydrolyzed only single-stranded RNA with a mode of action that was endonucleolytic. The vacuolar ribonuclease had no requirement for divalent metal ions, and did not exhibit phosphomonoesterase (EC 3.1.3.1; EC 3.1.3.2) and phosphodiesterase (EC 3.1.15.1; EC 3.1.16.1) activity. The specificity of the enzyme has been studied by using homopolyribonucleotides as substrates. The end-products obtained were the respective nucleoside 2:3-cyclic monophosphates and, to minor extents, the corresponding nucleoside 3(2)-monophosphates. According to these observations, the vacuolar ribonuclease from tomato can be classified as ribonuclease I (EC 3.1.27.1).Abbreviations DEAE diethylaminoethyl - RNase ribonuclease - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis  相似文献   
40.
The function of the epidermis in auxinmediated elongation growth of maize (Zea mays L.) coleoptile segments was investigated. The following results were obtained: i) In the intact organ, there is a strong tissue tension produced by the expanding force of the inner tissues which is balanced by the contracting force of the outer epidermal wall. The compression imposed by the stretched outer epidermal wall upon the inner tissues gives rise to a wall-pressure difference which can be transformed into a water-potential difference between inner tissues and external medium (water) by removal of the outer epidermal wall. ii) Peeled segments fail to respond to auxin with normal growth. The plastic extensibility of the inner-tissue cell walls (measured with a constant-load extensiometer using living segments) is not influenced by auxin (or abscisic acid) in peeled or nonpeeled segments. It is concluded that auxin induces (and abscisic acid inhibits) elongation of the intact segment by increasing (decreasing) the extensibility specifically in the outer epidermal wall. In addition, tissue tension (and therewith the pressure acting on the outer epidermal wall) is maintained at a constant level over several hours of auxin-mediated growth, indicating that the inner cells also contribute actively to organ elongation. However, this contribution does not involve an increase of cell-wall extensibility, but a continuous shifting of the potential extension threshold (i.e., the length to which the inner tissues would extend by water uptake after peeling) ahead of the actual segment length. Thus, steady growth involves the coordinated action of wall loosening in the epidermis and regeneration of tissue tension by the inner tissues. iii) Electron micrographs show the accumulation of striking osmiophilic material (particles of approx. 0.3 m diameter) specifically at the plasma membrane/cell-wall interface of the outer epidermal wall of auxin-treated segments. iv) Peeled segments fail to respond to auxin with proton excretion. This is in contrast to fusicoccin-induced proton excretion and growth which can also be readily demonstrated in the absence of the epidermis. However, peeled and nonpeeled segments show the same sensitivity to protons with regard to the induction of acid-mediated in-vivo elongation and cell-wall extensibility. The observed threshold at pH 4.5–5.0 is too low to be compatible with a second messenger function of protons also in the growth response of the inner tissues. Organ growth is described in terms of a physical model which takes into account tissue tension and extensibility of the outer epidermal wall as the decisive growth parameters. This model states that the wall pressure increment, produced by tissue tension in the outer epidermal wall, rather than the pressure acting on the inner-tissue walls, is the driving force of growth.Abbreviations and symbols E el, E pl elastic and plastic in-vitro cell-wall extensibility, respectively - E tot E el+E pl - FC fusicoccin - IAA indole-3-acetic acid - IT inner tissue - ITW inner-tissue walls - OEW outer epidermal wall - osmotic pressure - P wall pressure - water potential  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号