首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15823篇
  免费   393篇
  国内免费   194篇
  2023年   140篇
  2022年   108篇
  2021年   180篇
  2020年   213篇
  2019年   240篇
  2018年   239篇
  2017年   187篇
  2016年   228篇
  2015年   411篇
  2014年   1195篇
  2013年   1074篇
  2012年   1045篇
  2011年   1328篇
  2010年   1056篇
  2009年   665篇
  2008年   711篇
  2007年   724篇
  2006年   648篇
  2005年   519篇
  2004年   558篇
  2003年   417篇
  2002年   277篇
  2001年   163篇
  2000年   195篇
  1999年   261篇
  1998年   237篇
  1997年   201篇
  1996年   201篇
  1995年   205篇
  1994年   238篇
  1993年   176篇
  1992年   213篇
  1991年   172篇
  1990年   149篇
  1989年   162篇
  1988年   159篇
  1987年   145篇
  1986年   126篇
  1985年   130篇
  1984年   155篇
  1983年   94篇
  1982年   153篇
  1981年   118篇
  1980年   132篇
  1979年   126篇
  1978年   79篇
  1977年   88篇
  1976年   51篇
  1972年   24篇
  1971年   23篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
181.
Two lines of the red and pale yellow cell suspension cultures, prepared fromPrunus x yedoensis Matsum. callus induced by Murashige and Skoog's (1962) basal medium supplemented with 2, 4-dichlorophenoxyacetic acid (2, 4-D, 1.0 mg/l), kinetin (0.1 mg/l) and sucrose (30 g/l), were maintained on Schenk and Hildebrandt medium as modified by Mitchell and Gildow (1975). The red cell suspension culture produced cyanidin 3-monoglucoside, 5, 4′-dihydroxy-7-methoxyisoflavone 4′-glucoside (prunetrin), isoquercitrin, catechin, epicatechin, and procyanidin B-1, B-2, B-3 and B-4, while the pale yellow cells produced only a small amount of catechin and epicatechin as main flavonoids. These flavonoid compounds found in the red cell culture were present also in maturePrunus leaves. Maximum growth and maximum amount of total phenol and proanthocyanidin (procyanidins) were obtained with 0.3 mg/l of both 2,4-D and kinetin. Maximum concentration of anthocyanin was also obtained with 0.3 mg/l 2, 4-D regardless of kinetin concentration. Accumulation of proanthocyanidin was markedly stimulated by low concentrations of phosphate, which reduced growth by about half, and also by high concentrations of inorganic nitrogen. Production of both anthocyanin and proanthocyanidin was reduced by lowered nitrogen levels. Cell growth and production of all phenolics were inhibited when ammonium ion replaced nitrate in the medium.  相似文献   
182.
Binding of the J 1 Adhesion Molecules to Extracellular Matrix Constituents   总被引:6,自引:0,他引:6  
The J1 glycoproteins can be obtained in multiple forms in the soluble fraction of developing and adult mouse brain tissue. They are recovered as two forms of apparent molecular weights of 160,000 and 180,000 (J1-160) from adult mouse brain and as forms of apparent molecular weights of 200,000 and 220,000 (J1-220) from developing brain. J1-160 and J1-220 share common epitopes but are considered as separate entities, with J1-220 being immunochemically closely related if not identical to tenascin. Based on the observation that J1 immunoreactivity appears on basement membrane and interstitial collagens after denervation of the neuromuscular junction in adult rodents, we became interested in investigating the binding properties of J1 glycoproteins to extracellular matrix constituents in vitro. Both J1-160 and J1-220 bound to collagens type I-VI and IX but not to laminin, fibronectin, bovine serum albumin, or gelatin under hypotonic buffer conditions. Under isotonic buffer conditions, J1-220 bound to all collagen types, whereas J1-160 bound only to collagen types V and VI with values that could be examined by Scatchard analysis. Binding of J1-220 to collagens displayed two binding constants (KD) between 1.5 and 4.4 X 10(-9) and 1.8 and 5.5 X 10(-8) M, respectively, under hypotonic buffer conditions and a single KD of 2.1-8.0 X 10(-8) M under isotonic buffer conditions. Binding of J1-160 to collagens had an apparent KD of 1.9-8.0 X 10(-9) M under hypotonic buffer conditions. Under isotonic buffer conditions, binding constants of J1-160 to collagen types V and VI were approximately 2 X 10(-8) M. Binding of J1-220 to collagen type I could be inhibited by J1-220, J1-160, and collagen type VI but not by fibronectin or gelatin. Conversely, binding of J1-160 was inhibited by J1-220, J1-160, and collagen type VI (in order of decreasing efficacy of competition). J1-160 and J1-220 were retained on a heparin-agarose column and eluted in a salt gradient at approximately 0.5 M NaCl. The formation of the J1-heparin complexes was inhibited 100-fold more efficiently by heparin than by chondroitin sulfate. These experiments show that J1 glycoproteins resemble in many respects the extracellular matrix constituents fibronectin, laminin, vitronectin, and von Willebrand factor.  相似文献   
183.
Characterization of Opioid Receptors in Cultured Neurons   总被引:1,自引:1,他引:0  
The appearance of mu-, delta-, and kappa-opioid receptors was examined in primary cultures of embryonic rat brain. Membranes prepared from striatal, hippocampal, and hypothalamic neurons grown in dissociated cell culture each exhibited high-affinity opioid binding sites as determined by equilibrium binding of the universal opioid ligand (-)-[3H]bremazocine. The highest density of binding sites (per mg of protein) was found in membranes prepared from cultured striatal neurons (Bmax = 210 +/- 40 fmol/mg protein); this density is approximately two-thirds that of adult striatal membranes. By contrast, membranes of cultured cerebellar neurons and cultured astrocytes were devoid of opioid binding sites. The opioid receptor types expressed in cultured striatal neurons were characterized by equilibrium binding of highly selective radioligands. Scatchard analysis of binding of the mu-specific ligand [3H]D-Ala2,N-Me-Phe4,Gly-ol5-enkephalin to embryonic striatal cell membranes revealed an apparent single class of sites with an affinity (KD) of 0.4 +/- 0.1 nM and a density (Bmax) of 160 +/- 20 fmol/mg of protein. Specific binding of (-)-[3H]bremazocine under conditions in which mu- and delta-receptor binding was suppressed (kappa-receptor labeling conditions) occurred to an apparent single class of sites (KD = 2 +/- 1 nM; Bmax = 40 +/- 15 fmol/mg of protein). There was no detectable binding of the selective delta-ligand [3H]D-Pen2,D-Pen5-enkephalin. Thus, cultured striatal neurons expressed mu- and kappa-receptor sites at densities comparable to those found in vivo for embryonic rat brain, but not delta-receptors.  相似文献   
184.
Summary The evaluation of the intracellular signal train and its regulatory function in controlling transepithelial transport with electrophysiological methods often requires intracellular measurements with microelectrodes. However, multiple impalements in epithelial cells are hampered by the small size of the cells. In an attempt to avoid these problems we fused cells of an established cell line, Madin Darby canine kidney cells, originally derived from dog kidney, to giant cells by applying a modified polyethylene glycol method. During trypsin-induced detachment from the ground of the petri dish, individual cells grown in a monolayer incorporate volume and mainly lose basolateral plasma membrane by extrusion. By isovolumetric cell-to-cell fusion, spherical giant cells are formed within 2 hr. During this process a major part of the individual cell plasma membranes is internalized. Over three weeks following cell plasma membrane fusion degradation of single cell nuclei and cell nuclear fusion occurs. We conclude that this experimental approach opens the possibility to investigate ion transport of epithelia in culture by somatic cell genetic techniques.  相似文献   
185.
186.
Dwarf pea (Pisum sativum L.) plants with genotypes cryc and crys responded differently when an 8 h photoperiod (8 h daylight, 16 h dark) was extended to 24 h (8 h daylight, 16 h incandescent light). Genotype cryc showed up to a 4-fold increase in internode length, sustained by increases in both cell length (particularly of epidermal cells) and cell number (particularly of cortical cells) while crys plants showed up to a 2-fold increase in internode length sustained mostly by an increase in cell number. Under an 8 h (daylight) photoperiod the two genotypes did not differ in their sensitivity to applied gibberellin A1 (GA1) and they showed a similar pattern of response. GA1 significantly increased internode length, cell length and cell number in both genotypes. Incandescent light did not increase the size of the response to GA1 except for crys plants at high dose rates of GA1 (29–58 nmol). At saturating doses of GA1 the two genotypes attained a similar peak internode length; incandescent light increased the peak by about 40%. GA1 increased the rate of leaf appearance by up to 33% while incandescent light reduced the rate by 4–7%. The elongation response of the more mature internodes of cryc plants to GA1 or incandescent light was due primarily to an increase in cell length whereas increased cell number made a significant contribution in the case of internodes which were relatively immature at the time the stimulus was applied. The progressive increase in internode length of both genotypes during ontogeny was due primarily to an increase in cell number. In conclusion, alleles cryc and crys (background le La) do not confer a difference in sensitivity to GA1 and the increase in internode length in response to incandescent light is probably not the result of a real or perceived increase in GA1 level. Allele crys may partially block a phytochrome mediated response to light and the key difference between genotypes crys and cryc may lie in the greater elongation (extensibility?) of cryc epidermal cells in incandescent light.  相似文献   
187.
Melissa A. Melan 《Protoplasma》1990,153(3):169-177
Summary We have investigated the effects of microtubule stabilizing conditions upon microtubule patterns in protoplasts and developed a new method for producing protoplasts which have non-random cortical microtubule arrays. Segments of elongating pea epicotyl tissue were treated with the microtubule stabilizing drug taxol for 1 h before enzymatic digestion of the cell walls in the presence of the drug. Anti-tubulin immunofluorescence showed that 40 M taxol preserved regions of ordered microtubules. The microtubules in these regions were arranged in parallel arrays, although the arrays did not always show the transverse orientation seen in the intact tissue. Protoplasts prepared without taxol had microtubules which were random in distribution. Addition of taxol to protoplasts with random microtubule arrangements did not result in organized microtubule arrays. Taxol-treated protoplasts were used to determine whether or not organized microtubule arrays would affect the organization of cell wall microfibrils as new walls were regenerated. We found that protoplasts from taxol-treated tissue which were allowed to regenerate cell walls produced organized arrays of microfibrils whose patterns matched those of the underlying microtubules. Protoplasts from untreated tissue synthesized microfibrils which were disordered. The synthesis of organized microfibrils by protoplasts with ordered microtubules arrays shows that microtubule arrangements in protoplasts influence the arrangement of newly synthesized microfibrils.Abbreviations DIC differential interference contrast - DMSO dimethyl sulfoxide - FITC fluorescein isothiocyanate - IgG immunoglobulin G - PIPES piperazine-N,N-bis[2-ethane-sulfonic acid] - PBS phosphate buffered saline  相似文献   
188.
Cortical microtubules (MTs) in protoplasts prepared from tobacco (Nicotiana tabacum L.) BY-2 cells were found to be sensitive to cold. However, as the protoplasts regenerated cell walls they became resistant to cold, indicating that the cell wall stabilizes cortical MTs against the effects of cold. Since poly-l-lysine was found to stabilize MTs in protoplasts, we examined extensin, an important polycationic component of the cell wall, and found it also to be effective in stabilizing the MTs of protoplasts. Both extensin isolated from culture filtrates of tobacco BY-2 cells and extensin isolated in a similar way from cultures of tobacco XD-6S cells rendered the cortical MTs in protoplasts resistant to cold. Extensin at 0.1 mg·ml−1 was as effective as the cell wall in this respect. It is probable that extensin in the cell wall plays an important role in stabilizing cortical MTs in tobacco BY-2 cells.  相似文献   
189.
190.
Jan Marc  Barry A. Palevitz 《Planta》1990,182(4):626-634
The organization of microtubules (MTs) in the cortex of cells at interphase is an important element in morphogenesis. Mechanisms controlling the initiation of MTs and their spatial ordering, however, are largely unknown. Our recent study concerning the generation of a radial array of MTs in stomatal guard cells inAllium showed that the MTs initiate in a cortical MT-organizing zone adjacent to the ventral wall separating the two young guard cells (Marc, Mineyuki and Palevitz, 1989, Planta179, 516, 530). In an attempt to detect MT-ordering mechanisms separate from the sites of MT initiation, we now employ various drugs to manipulate the geometry and integrity of the ventral wall and thereby also the associated MT-organizing zone. In the presence of cytochalasin D the ventral wall is tilted away from its normal mid-longitudinal anticlinal alignment, while treatments with the herbicide chloroisopropyl-N-phenylcarbamate (CIPC) induce the formation of a branched ventral wall. Nonetheless, in either case the MTs still form a radial array, although this is asymmetric as it is centered in accordance with the misaligned or branched ventral wall. Since the MTs maintain their original course undisturbed as they extend beyond the abnormal ventral wall, there is no evidence for the presence of an inherent MT-ordering mechanism at locations remote from MT-initiation sites. Following treatments with caffeine, which abolishes the formation of the ventral wall, the MTs revert to a transversely oriented cylindrical array as in normal epidermal cells. Thus the presence of the ventral wall, and presumably also the associated MT-organizing zone, is essential for the establishment of the radial array. The MT-organizing zone is therefore involved not only in the initiation of MTs, but also in determining their spatial order throughout the cell cortex. We thank Drs. Richard J. Cyr and Yoshi Mineyuki for providing valueable suggestions during the course of this work, and Ms. Elizabeth Bruce printing some of the figures. This research was supported by Funds from the National Science Foundation grants DCB-8703292 to B.A.P. and DCB-8803286 to B.A.P. and J.M.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号