首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16106篇
  免费   398篇
  国内免费   198篇
  2023年   139篇
  2022年   114篇
  2021年   181篇
  2020年   213篇
  2019年   259篇
  2018年   251篇
  2017年   196篇
  2016年   231篇
  2015年   412篇
  2014年   1195篇
  2013年   1076篇
  2012年   1047篇
  2011年   1329篇
  2010年   1059篇
  2009年   669篇
  2008年   716篇
  2007年   727篇
  2006年   651篇
  2005年   520篇
  2004年   567篇
  2003年   423篇
  2002年   278篇
  2001年   164篇
  2000年   195篇
  1999年   263篇
  1998年   242篇
  1997年   203篇
  1996年   201篇
  1995年   205篇
  1994年   237篇
  1993年   178篇
  1992年   215篇
  1991年   172篇
  1990年   151篇
  1989年   162篇
  1988年   158篇
  1987年   144篇
  1986年   127篇
  1985年   142篇
  1984年   180篇
  1983年   117篇
  1982年   178篇
  1981年   136篇
  1980年   143篇
  1979年   137篇
  1978年   92篇
  1977年   98篇
  1976年   67篇
  1974年   26篇
  1972年   24篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
971.
In vertebrates, little is known on the role of programmed cell death (PCD) occurring within the population of dividing neural precursors and newly formed neuroblasts during early neural development. During primary neurogenesis, PCD takes place within the neuroectoderm of Xenopus embryos in a reproducible stereotypic pattern, suggesting a role for PCD during the early development of the CNS. We find that the spatio-temporal pattern of PCD is unaffected in embryos in which cell proliferation has been blocked and whose neuroecotoderm contains half the normal number of cells. This shows that PCD is not dependent on cell division. It further suggests that PCD does not solely function to regulate absolute cell numbers within the neuroectoderm. We demonstrate that PCD can be reproducibly inhibited in vivo during primary neurogenesis by the overexpression of human Bcl-2. Following PCD inhibition, normal neurogenesis is disrupted, as seen by the expansion of the expression domains of XSox-2, XZicr-2, XNgnr-1, XMyT-1, and N-Tubulin, XNgnr-1 being the most affected. PCD inhibition, however, did not affect the outcome of lateral inhibition. We propose, then, that PCD regulates primary neurogenesis at the level of neuronal determination.  相似文献   
972.
973.
The unc-52 gene of Claenorhabditis elegans encodes a homologue of the basement membrane heparan sulfate proteoglycan perlecan. Viable alleles reduce the abundance of UNC-52 in late larval stages and increase the frequency of distal tip cell (DTC) migration defects caused by mutations disrupting the UNC-6/netrin guidance system. These unc-52 alleles do not cause circumferential DTC migration defects in an otherwise wild-type genetic background. The effects of unc-52 mutations on DTC migrations are distinct from effects on myofilament organization and can be partially suppressed by mutations in several genes encoding growth factor-like molecules, including EGL-17/FGF, UNC-129/TGF-beta, DBL-1/TGF-beta, and EGL-20/WNT. We propose that UNC-52 serves dual roles in C. elegans larval development in the maintenance of muscle structure and the regulation of growth factor-like signaling pathways.  相似文献   
974.
975.
Cell division requires an increase in surface area to volume ratio. During early development, surface area can increase, volume can decrease, or surface topography can be optimized to allow for division. While exocytosis is thought to be essential for division [Mol. Biol. Cell 10 (1999), 2735; Proc. Natl. Acad. Sci. USA 99 (2002), 3633], exocytosis doesn't always yield an increase in surface area [Proc. Natl. Acad. Sci. USA 79 (1982), 6712]. We used multiphoton laser scanning microscopy, fluorescence spectroscopy, and electron microscopy to monitor membrane trafficking, surface area, volume, and surface topography during early sea urchin development. Despite extensive membrane trafficking monitored by FM 1-43 fluorescence, we find that the net surface area of the embryo does not change prior to the eight-cell stage. During this period, embryo volume decreases by 15%, and microvilli disappear from interior facing membrane segments. Thus, the first three cell divisions utilize residual membrane liberated by decreasing cytoplasmic volume, and reducing microvilli density on interior facing membranes. Only after the eight-cell stage was a net increase in FM 1-43 fluorescence from the embryo surface detected. Our data suggest that compensatory endocytosis is downregulated after this developmental stage to yield an increase in surface area for cell division.  相似文献   
976.
977.
978.
The evolution of female multiple mating in social hymenoptera   总被引:5,自引:0,他引:5  
Abstract The evolution of female multiple mating is a highly controversial topic, especially in social insects. Here we analyze, using comparative analyses and simulation models, the merits of two major contending hypotheses for the adaptive value of polyandry in this group. The hypotheses maintain that, respectively, the resulting genotypic diversity among offspring within a colony: (1) mitigates against the effects of parasites; or (2) favors adaptive division of labor. Only two of 11 phylogenetically uncontrolled comparative analyses supported an association between polyandry and the complexity of division of labor (measured here using worker caste polymorphism or polyethism) as proposed by hypothesis 2, and after controlling for phylogeny there were no significant associations. In contrast, a previous study demonstrated such an association for parasite load as expected under hypothesis 1. In addition, we used simulation models to track the spread of an initially rare allele for double mating in a population of single-mating alleles, thus analyzing the crucial first step from monandry to polyandry. We find that double mating evolves consistently under antagonistic coevolution given that parasites exert sufficient selection intensity. In contrast, selection for enhanced division of labor resulted in only an erratic appearance of polyandry in highly (and mostly negatively) autocorrelated environments where no coevolutionary dynamics were allowed. Together, we interpret these results to suggest that parasites, and the antagonistic coevolutionary pressures they exert, may play an important role in the evolution of polyandry in social hymenopteran populations.  相似文献   
979.
It is believed that pericentromeric heterochromatin may play a major role in the epigenetic regulation of gene expression. We have previously shown that centromeres in human peripheral blood cells aggregate into distinct "myeloid" and "lymphoid" spatial patterns, suggesting that the three-dimensional organization of centromeric heterochromatin in interphase may be ontogenically determined during hematopoietic differentiation. To investigate this possibility, the spatial patterns of association of different centromeres were analyzed in hematopoietic progenitors and compared with those in early-B and early-T cells, mature B and T lymphocytes, and, additionally, mature granulocytes and monocytes. We show that those patterns change during lymphoid differentiation, with major spatial arrangements taking place at different stages during T and B cell differentiation. Heritable patterns of centromere association are observed, which can occur either at the level of the common lymphoid progenitor, or in early-T or early-B committed cells. A correlation of the observed patterns of centromere association with the gene content of the respective chromosomes further suggests that the variation in the composition of these heterochromatic structures may contribute to the dynamic relocation of genes in different nuclear compartments during cell differentiation, which might have functional implications for cell-stage-specific gene expression.  相似文献   
980.
Small heat shock proteins (hsps) act as molecular chaperones by preventing the thermal aggregation and unfolding of cellular protein; however, the manner by which cells regulate chaperone activity remains unclear. In the present study, we examined the role of phosphorylation on the chaperone function of the Xenopus small hsp30. Both heat stress and sodium arsenite treatment in A6 cells resulted in a rapid activation of p38alpha and MAPKAPK-2. Surprisingly, the association of MAPKAPK-2 with hsp30 and its subsequent phosphorylation were more prevalent during recovery after heat stress. Treatment of A6 cells with SB203580, an inhibitor of the p38 MAP kinase pathway, resulted in a loss of hsp30 phosphorylation. Phosphorylation resulted in the formation of smaller multimeric hsp30 complexes and resulted in a significant loss of secondary structure. Consequently the phosphorylation-induced structural changes severely compromised the ability of hsp30 to prevent the heat-induced aggregation of citrate synthase and luciferase in vitro. We confirmed that the loss of chaperone activity was coincident with an attenuated binding of phosphorylated hsp30 with target proteins. Our data suggest that phosphorylation may be necessary to regulate the post-heat stress molecular chaperone activity of hsp30.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号