首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1501篇
  免费   33篇
  国内免费   29篇
  2024年   1篇
  2022年   12篇
  2021年   17篇
  2020年   45篇
  2019年   70篇
  2018年   65篇
  2017年   49篇
  2016年   51篇
  2015年   58篇
  2014年   173篇
  2013年   162篇
  2012年   88篇
  2011年   176篇
  2010年   93篇
  2009年   60篇
  2008年   67篇
  2007年   58篇
  2006年   39篇
  2005年   43篇
  2004年   34篇
  2003年   29篇
  2002年   25篇
  2001年   5篇
  2000年   19篇
  1999年   12篇
  1998年   8篇
  1997年   14篇
  1996年   5篇
  1995年   10篇
  1994年   8篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   6篇
  1989年   4篇
  1988年   5篇
  1987年   7篇
  1986年   2篇
  1985年   2篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1977年   1篇
  1974年   1篇
排序方式: 共有1563条查询结果,搜索用时 31 毫秒
71.
Doramapimod (BIRB-796) is widely recognized as one of the most potent and selective type II inhibitors of human p38α mitogen-activated protein kinase (MAPK); however, the understanding of its binding mechanism remains incomplete. Previous studies indicated high affinity of the ligand to a so-called allosteric pocket revealed only in the ‘out’ state of the DFG motif (i.e. Asp168-Phe169-Gly170) when Phe169 becomes fully exposed to the solvent. The possibility of alternative binding in the DFG-in state was hypothesized, but the molecular mechanism was not known. Methods of bioinformatics, docking and long-time scale classical and accelerated molecular dynamics have been applied to study the interaction of Doramapimod with the human p38α MAPK. It was shown that Doramapimod can bind to the protein even when the Phe169 is fully buried inside the allosteric pocket and the kinase activation loop is in the DFG-in state. Orientation of the inhibitor in such a complex is significantly different from that in the known crystallographic complex formed by the kinase in the DFG-out state; however, the Doramapimod’s binding is followed by the ligand-induced conformational changes, which finally improve accommodation of the inhibitor. Molecular modelling has confirmed that Doramapimod combines the features of type I and II inhibitors of p38α MAPK, i.e. can directly and indirectly compete with the ATP binding. It can be concluded that optimization of the initial binding in the DFG-in state and the final accommodation in the DFG-out state should be both considered at designing novel efficient type II inhibitors of MAPK and homologous proteins.

Communicated by Ramaswamy H. Sarma  相似文献   

72.
Emerging clinical evidences highlight the association of Interleukin-8 (IL8) with endodontic pulpitis. Relatively higher expression of IL8 has been found in the pulp samples of pulpitis patients with moderate/severe pain. It is speculated that IL8 can be considered as a potential target for therapeutics of endodontic pulpitis. A library consisting of 3072 small molecules from the ZINC database was used to identify potential lead molecules with drug-like properties against the IL8. Based on the in-silico structure-assisted drug designing involving molecular docking, MD simulations, and MMPBSA analyses, we found a small molecule ZINC14613097 inhibits IL8. This study provides a new lead molecule than can be further validated in in-vitro, in-vivo, and ongoing clinical studies for the therapeutic management of endodontic pulpitis.  相似文献   
73.
Mitochondrial complex III is one of the most promising targets for a number of pharmaceuticals and fungicides. Due to the wide-spread use of complex III-inhibiting fungicides, a considerable increase of resistance has occurred worldwide. Therefore, inhibitors with novel scaffolds and potent activity against complex III are still in great demand. In this article, a new series of amide compounds bearing the diaryl ether scaffold were designed and prepared, followed by the biological evaluation. Gratifyingly, several compounds demonstrated potent activity against succinate-cytochrome c reductase (SCR, a mixture of mitochondrial complex II and complex III), with compound 3w possessing the best inhibitory activity (IC50 = 0.91 ± 0.09 μmol/L). Additional studies verified that 3w was a new inhibitor of complex III. Moreover, computational simulations elucidated that 3w should bind to the Qo site of complex III. We believe this work will be valuable for the preparation and discovery of more complex III inhibitors.  相似文献   
74.
Activating mutations in FGF receptor 3 (FGFR3) cause several human dwarfism syndromes by affecting both chondrocyte proliferation and differentiation. Using microarray and biochemical analyses of FGF-treated rat chondrosarcoma chondrocytes, we show that FGF inhibits chondrocyte proliferation by initiating multiple pathways that result in the induction of antiproliferative functions and the down-regulation of growth-promoting molecules. The initiation of growth arrest is characterized by the rapid dephosphorylation of the retinoblastoma protein (pRb) p107 and repression of a subset of E2F target genes by a mechanism that is independent of cyclin E-Cdk inhibition. In contrast, hypophosphorylation of pRb and p130 occur after growth arrest is first detected, and may contribute to its maintenance. Importantly, we also find a number of gene expression changes indicating that FGF promotes many aspects of hypertrophic differentiation, a notion supported by in situ analysis of developing growth plates from mice expressing an activated form of FGFR3. Thus, FGF may coordinate the onset of differentiation with chondrocyte growth arrest in the developing growth plate.  相似文献   
75.
This study is the first report on the effectiveness and specificity of glucopyranosylidene-spiro-thiohydantoin (G-TH) inhibitor on the 2-chloro-4-nitrophenyl-4-O-beta-D-galactopyranosyl-maltoside (GalG(2)CNP) hydrolysis catalysed by human salivary alpha-amylase (HSA). The inhibition of hydrolysis is a mixed-noncompetitive type. In any case, only one molecule of inhibitor binds to HSA. Since our substrate and inhibitor are small molecules the long enough active site facilitates accommodating both of them simultaneously. However, the product formation can be excluded from enzyme-substrate-inhibitor complex (ESI) since Dixon plots are linear. Kinetic constants calculated from secondary plots and nonlinear regression are almost entirely equal, confirming the fidelity of the suggested model. Kinetic constants (K(1i)=7.3mM, L(1i)=2.84 mM) show that G-TH is not such a potent inhibitor of HSA as acarbose and indicate higher stability for ESI than for enzyme-inhibitor complex.  相似文献   
76.
The SARS-CoV S glycoprotein: expression and functional characterization   总被引:36,自引:0,他引:36  
We have cloned, expressed, and characterized the full-length and various soluble fragments of the SARS-CoV (Tor2 isolate) S glycoprotein. Cells expressing S fused with receptor-expressing cells at neutral pH suggesting that the recombinant glycoprotein is functional, its membrane fusogenic activity does not require other viral proteins, and that low pH is not required for triggering membrane fusion; fusion was not observed at low receptor concentrations. S and its soluble ectodomain, S(e), were not cleaved to any significant degree. They ran at about 180-200kDa in SDS gels suggesting post-translational modifications as predicted by previous computer analysis and observed for other coronaviruses. Fragments containing the N-terminal amino acid residues 17-537 and 272-537 but not 17-276 bound specifically to Vero E6 cells and purified soluble receptor, ACE2, recently identified by M. Farzan and co-workers [Nature 426 (2003) 450-454]. Together with data for inhibition of binding by antibodies developed against peptides from S, these findings suggest that the receptor-binding domain is located between amino acid residues 303 and 537. These results also confirm that ACE2 is a functional receptor for the SARS virus and may help in the elucidation of the mechanisms of SARS-CoV entry and in the development of vaccine immunogens and entry inhibitors.  相似文献   
77.
Phospholipase A2 (PLA2) enzymes consist of a large family of proteins which share the same enzymatic function and display considerable sequence homology. These enzymes have been identified and characterised in mammalian tissue and snake venoms. Numerous physiological functions have been attributed to mammalian PLA2s and they are nontoxic. In comparison, venom PLA2s are toxic and induce a variety of pharmacological effects that are probably mediated via membrane receptors. Snake PLA2 inhibitors (PLIα), with a similar structure to the M-type receptor, have been identified as soluble complexes in the serum of viperinae and crotalinae snakes. These inhibitors showed selective binding to crotalid group II PLA2s and appeared to be restricted to the serum of this snake family. Analysis of PLA2 binding to recombinant fragments of PLIα indicated that the CRD region was most likely responsible for enzyme inhibition. A second type of inhibitor, PLIβ, has been identified in serum from one viperid snake and consists of a leucine-rich structure. The third type of inhibitor, PLIγ, was found in the serum of five snake families and contains a pattern of cysteine residues that define a three-finger structure. PLIγ inhibitors isolated from the serum of Elapidae, Hydrophidae, Boidae and Colubridae families were able to inhibit a broad range of enzymes including the nontoxic mammalian group IB and IIA PLA2s, and bee venom group III PLA2. However, differences in the binding affinities indicated specificity for particular PLA2s. A different representation has emerged for crotalid and viperid snakes. Their PLIγs did not inhibit bee venom group III, mammalian group IB and IIA enzymes. Furthermore, inhibition data for the γ-type inhibitor from Crotalus durissus terrificus (CICS) showed that this inhibitor was specific for viperid β-neurotoxins and did not inhibit β-neurotoxins from elapids [1]. Further studies are required to determine if this phenomenon is true for all γ-type inhibitors from Crotalidae snakes. The relative distribution of these inhibitors, their specificities and the structural features involved in binding are discussed in this review.  相似文献   
78.
We report here for the first time that germanium oxide (GeO(2)) blocks cell progression. GeO(2) is not genotoxic to Chinese hamster ovary (CHO) cells and has limited cytotoxicity. However, GeO(2) arrests cells at G2/M phase. The proportion of cells stopped at G2/M phase increased dose-dependently up to 5 mM GeO(2) when treated for 12 h, but decreased at GeO(2) concentration was greater than 5 mM. Analysis of 5-bromodeoxyuridine-labeled cells indicated that GeO(2) delayed S phase progression in a dose-dependent manner, and blocked cells at G2/M phase. Microscopic examination confirmed that GeO(2) treatment arrested cells at G2 phase. Similar to several other events that cause G2 block, the GeO(2)-induced G2 block can also be ameliorated by caffeine in a dose- and time-dependent manner. To explore the mechanism of G2 arrest by GeO(2), cyclin content and cyclin-dependent kinase activity were examined. Cyclin B1 level was not affected after GeO(2) treatment in CHO cells. However, GeO(2) decreased p34(cdc2) kinase (Cdk1) activity. The kinase activity recovered within 9 h after GeO(2) removal and correlated with the transition of G2/M-G1 phase of the cells. This result suggests that GeO(2) treatment reduces Cdk1 activity and causing the G2 arrest in CHO cells.  相似文献   
79.
80.
Frings W  Dreier J  Sorg C 《FEBS letters》2002,520(1-3):93-96
We have studied the expression of XIAP, cIAP-1 and cIAP-2 in fetal rat hepatocytes and its possible regulation by pro-apoptotic stimuli (transforming growth factor-β (TGF-β)) and survival signals (epidermal growth factor (EGF)). The three forms of inhibitor of apoptosis proteins (IAPs) are expressed in fetal hepatocytes and only cIAP-1, but not XIAP or cIAP-2, is cleaved during TGF-β-induced apoptosis. The pan-caspase inhibitor Z-VAD.fmk blocked this effect, which indicates that cIAP-1 is a caspase substrate. EGF plays a dual role in the regulation of IAPs expression. On one hand, it increases cIAP-1 and cIAP-2 basal expression and, on the other hand, it blocks the cleavage of cIAP-1 by caspases induced by TGF-β.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号