首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12120篇
  免费   792篇
  国内免费   383篇
  2024年   22篇
  2023年   180篇
  2022年   251篇
  2021年   433篇
  2020年   524篇
  2019年   709篇
  2018年   429篇
  2017年   283篇
  2016年   310篇
  2015年   341篇
  2014年   680篇
  2013年   876篇
  2012年   599篇
  2011年   747篇
  2010年   558篇
  2009年   523篇
  2008年   562篇
  2007年   593篇
  2006年   539篇
  2005年   520篇
  2004年   504篇
  2003年   424篇
  2002年   402篇
  2001年   260篇
  2000年   239篇
  1999年   226篇
  1998年   166篇
  1997年   142篇
  1996年   126篇
  1995年   96篇
  1994年   113篇
  1993年   89篇
  1992年   66篇
  1991年   63篇
  1990年   52篇
  1989年   41篇
  1988年   47篇
  1987年   45篇
  1986年   26篇
  1985年   50篇
  1984年   73篇
  1983年   50篇
  1982年   54篇
  1981年   35篇
  1980年   55篇
  1979年   43篇
  1978年   25篇
  1977年   25篇
  1976年   22篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
81.
Plant Molecular Biology - The α-Amy1 and α-Amy2 genes of wheat produce distinct subsets of α-amylase isozymes which show different patterns of expression in wheat aleurone cells and...  相似文献   
82.
p38MAPK是丝裂原活化蛋白激酶(mitogen activated protein kinases,MAPK)家族的一个亚类,在高等脊椎动物免疫应答的信号转导过程中扮演着非常重要的角色。在日本七鳃鳗(Lampetra japonica)中发现,p38MAPK以两种异构体的形式存在。通过克隆它们的开放阅读框并进行同源序列比对和系统发育分析,鉴定它们分别为p38α(Lja-mapk14)和p38β(Lja-mapk11)。用混合菌刺激七鳃鳗,利用免疫印迹方法,检测Lja-mapk14在外周血类淋巴细胞、鳃组织和髓样小体中,分别在加强免疫36 h、24 h和24 h后,表达量达到峰值,分别为对照组的2.9、2.1和2.6倍;而Lja-mapk11在以上组织中,都在加强免疫36 h后达到表达量峰值,分别为对照组的2.2、2.5和6.3倍。实时荧光定量PCR检测发现,Lja-mapk14的mRNA表达水平在混合菌加强免疫36 h后,分别在类淋巴细胞、鳃组织和髓样小体中,上调2.3、1.5和3.4倍;而Lja-mapk11的则分别在类淋巴细胞、鳃组织和心肌中,上调1.3、2.6和1.6倍。以上结果在mRNA和蛋白质水平证明,Lja-mapk14和Lja-mapk11均参与七鳃鳗的免疫应答反应。采用B细胞和T细胞丝裂原LPS和PHA分别对七鳃鳗进行刺激,免疫印迹结果显示,Lja-mapk14和Lja-mapk11蛋白质表达量经LPS加强免疫36 h后,在类淋巴细胞、鳃组织和髓样小体中,上调表达1.3 ~ 4.1倍;而经PHA加强免疫36 h后,Lja-mapk14和Lja-mapk11在上述组织中表达量均不存在显著变化。以上结果说明,Lja-mapk14和Lja-mapk11可能参与了B细胞丝裂原LPS介导的VLRB类淋巴细胞亚群的免疫应答反应。  相似文献   
83.
Excised cotyledons of radiata pine ( Pinus radiata D. Don), cultured under shootforming (plus cytokinin) and elongating (minus cytokinin) conditions, were incubated in 14C-glucose, 14C-acetate or 14C-bicarbonate at different stages of growth and differentiation. 14CO2 was produced when the cotyledons were fed 14C-glucose and 14C-acetate (no measurement was made for 14C-bicarbonate feeding). Label from these precursors was incorporated into ethanol-soluble and -insoluble fractions. The largest percentage of radioactivity was associated with the ethanol-soluble portion, which was further fractionated into lipids, amino acids, organic acids and sugars. The amount of label and the pattern of labelling associated with each of the above classes of metabolites varied with time in culture and morphogenetic behaviour of the cotyledons. In general, there was a tendency towards a high rate of incorporation of label in elongating cotyledons during the period of rapid elongation. On the other hand, a high rate of incorporation of label in shoot-forming cotyledons coincided with the period of meristematic tissue formation. The data obtained support the hypothesis that organized development in vitro involves a shift in metabolism, which precedes and is coincident with the initiation of the process.  相似文献   
84.
The internal motion of F-actin in the time range from 10(-6) to 10(-3) second has been explored by measuring the transient absorption anisotropy of eosin-labeled F-actin using laser flash photolysis. The transient absorption anisotropy of eosin-F-actin at 20 degrees C has a component that decays in the submicrosecond time scale to an anisotropy of about 0.3. This anisotropy then decays with a relaxation time of about 450 microseconds to a residual anisotropy of about 0.1 after 2 ms. When the concentration of eosin-F-actin was varied in the range from 7 to 28 microM, the transient absorption anisotropy curves obtained were almost indistinguishable from each other. These results show that the anisotropy decay arises from internal motion of eosin-F-actin. Analysis of the transient absorption anisotropy curves indicates that the internal motion detected by the decay in anisotropy is primarily a twisting of actin protomers in the F-actin helix; bending of the actin filament makes a minor contribution only to the measured decay. The torsional rigidity calculated from the transient absorption anisotropy is 0.2 X 10(-17) dyn cm2 at 20 degrees C, which is about an order of magnitude smaller than the flexural rigidity determined from previous studies. Thus, we conclude that F-actin is more flexible in twisting than in bending. The calculated root-mean-square fluctuation of the torsional angle between adjacent actin protomers in the actin helix is about 4 degrees at 20 degrees C. We also found that the torsional rigidity is approximately constant in the temperature range from 5 to approximately 35 degrees C, and that the binding of phalloidin does not appreciably affect the torsional motion of F-actin.  相似文献   
85.
We have studied submicrosecond and microsecond rotational motions within the contractile protein myosin by observing the time-resolved anisotropy of both absorption and emission from the long-lived triplet state of eosin-5-iodoacetamide covalently bound to a specific site on the myosin head. These results, reporting anisotropy data up to 50 microseconds after excitation, extend by two orders of magnitude the time range of data on time-resolved site-specific probe motion in myosin. Optical and enzymatic analyses of the labeled myosin and its chymotryptic digests show that more than 95% of the probe is specifically attached to sulfhydryl-1 (SH1) on the myosin head. In a solution of labeled subfragment-1 (S-1) at 4 degrees C, absorption anisotropy at 0.1 microseconds after a laser pulse is about 0.27. This anisotropy decays exponentially with a rotational correlation time of 210 ns, in good agreement with the theoretical prediction for end-over-end tumbling of S-1, and with times determined previously by fluorescence and electron paramagnetic resonance. In aqueous glycerol solutions, this correlation time is proportional to viscosity/temperature in the microsecond time range. Furthermore, binding to actin greatly restricts probe motion. Thus the bound eosin is a reliable probe of myosin-head rotational motion in the submicrosecond and microsecond time ranges. Our submicrosecond data for myosin monomers (correlation time 400 ns) also agree with previous results using other techniques, but we also detect a previously unresolvable slower decay component (correlation time 2.6 microseconds), indicating that the faster motions are restricted in amplitude. This restriction is not consistent with the commonly accepted free-swivel model of S-1 attachment in myosin. In synthetic thick filaments of myosin, both fast (700 ns) and slow (5 microseconds) components of anisotropy decay are observed. In contrast to the data for monomers, the anisotropy of filaments has a substantial residual component (26% of the initial anisotropy) that does not decay to zero even at times as long as 50 microseconds, implying significant restriction in overall rotational amplitude. This result is consistent with motion restricted to a cone half-angle of about 50 degrees. The combined results are consistent with a model in which myosin has two principal sites of segmental flexibility, one giving rise to submicrosecond motions (possibly corresponding to the junction between S-1 and S-2) and the other giving rise to microsecond motions (possibly corresponding to the junction between S-2 and light meromyosin).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
86.
The conversion of aphid prey tissue (Acyrthosiphon pisum Harris) into predator biomass (immature life stages ofPropylaea 14-punctata L. andCoccinella 7-punctata L.) is calculated by plotting weight gain against assimilation (i.e. consumption minus egestion). This concept is added to the metabolic pool model byGutierrez et al. (1981) that enables the simulation of growth and development of a predator on a physiological basis. Physiological time is expressed in daydegrees above lower development thresholds for both species. Visual examination of observed and calculated values showed that the model satisfactorily describes the growth patterns of the above predators.   相似文献   
87.
Cellulose- and xylan-degrading enzymes of Trichoderma reesei QM 9414 induced by, sophorose, xylobiose, cellulose and xylan were analyzed by isoelectric focusing. The sophorose-induced enzyme system contained two types of endo-1,4--glucanases (EC 3.2.1.4), one specific for cellulose and the other non-specific, hydrolyzing both cellulose and xylan, and exo-1,4--glucanases (cellobiohydrolases I, EC 3.2.1.91), i.e. all types of glucanases that are produced during growth on cellulose. Specific endo-1,4--xylanases (EC 3.2.1.8) present in the cellulose-containing medium were less abundant in the sophorose-induced enzyme system. Xylobiose and xylan induced only specific endo-1,4--xylanases. It is concluded that syntheses of cellulases and -xylanases in T. reesei QM 9414 are under separate control and that the non-specific endo-1,4--glucanases are constituents of the cellulose-degrading enzyme system.  相似文献   
88.
A gene bank of the nutritionally versatile, nitrogen-fixing cyanobacterium Chlorogloeopsis fritschii was constructed in Charon 4A. 2,800 recombinants containing 10–20 kbp C. fritschii DNA fragments were screened by Southern hybridization using probes containing the genes for the large (LSU) and small (SSU) subunits of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) from Anacystis nidulans. A single recombinant plaque (CDG1) containing a 10.9 kbp EcoR1 fragment from C. fritschii hybridized to both the LSU and SSU probes, indicating a possible linkage of these RuBisCO genes in C. fritschii. RuBisCO activity and protein were detected in CDG1 lysates of Escherichia coli. Hybridization was also obtained between C. fritschii DNA and the LSU probe from Chlamydomonas reinhardtii, although no homology was detected using the LSU probe from maize or the SSU probe from pea.Abbreviations RuBisCO d-ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP d-ribulose 1,5-bisphosphate - LSU large subunit of RuBisCO - SSU small subunit of RuBisCO - SDS sodium dodecyl sulphate - DOC deoxycholate  相似文献   
89.
Polymer chains of (13)--d-glucan were dissolved with 1 M NaOH at 4° C from native microfibrillar protoplast nets. The chains associated into microfibrils during NaOH neutralization or dialysis. In contrast to the native microfibrils which are of uniform width individually (10 to 20 nm) and arranged in flat bundles, the microfibrils formed in vitro showed no band formation and consisted of fibrous spindle-shaped subunits of variable width or loose elementary fibrils about 1.7 nm wide. X-ray diagrams of native nets indicated a fairly high crystallinity and were different for wet and dry specimens. They corresponded to those of paramylon. Precipitated glucans produced diagrams different from the former and revealing a lower crystallinity especially with the dry samples.The X-ray pattern, combined with other data, allowed the precipitated microfibrils to be identified as aggregates of molecular strands composed each of three intertwined helical glucan chains. Since these triple helical chains are about 1.7 nm wide the elementary fibrils of this width can represent only single triple-helical strands. These helices have 7 glucose residues per turn and therefore a low symmetry which explains the poor crystallizing properties. The 7 membered helix represents a basic difference with the well crystallized native glucan which is built of highly symmetrical triple helices with 6 glucose residues per turn. Since 61 helical conformation is not formed in vitro at normal temperatures its generation in vivo must be due to the action of synthesizing enzymes at the protoplast membrane. The intertwining of these helices and crystallization of the strands are determined by their symmetry and physical properties of the chains. This characterizes the native microfibrils as products of self-assembly of enzymegenerated 61 helices.  相似文献   
90.
The gibberellin (GA) 2-hydroxylases in mature and immature seeds of Pisum sativum have been partially purified and characterised. The enzymes are unstable when stored below pH 7.0 or in the absence of a thiol reagent. The optimum assay pH is between 7.4 and 7.8 and activity is dependent upon the presence of -ketoglutarate, Fe2+ and ascorbate. The 2-hydroxylase activities for GA1, GA4, GA9 and GA20 are chromatographically inseparable and correspond to a protein of Mr 44000. The rate of GA 2-hydroxylation varies according to substrate and some evidence indicates that the 2-hydroxylase activities for GA1 and GA4 and for GA9 and GA20 may reside in different proteins. During pea seed maturation, the specific activity of the enzyme(s) increases dramatically and reaches a maximum at a time when endogenous GA9, GA20, GA29 and GA51 are also at their greatest concentration. This correlation is not the result of substrate induction of enzyme activity. Since the GA 2-hydroxylases operate at maximal rate at low substrate concentrations they are incapable of rapidly 2-hydroxylating excessive quantities of (exogenously applied) GA1 or GA20. On the basis of the kinetic parameters of the GA 2-hydroxylase activities, a generalised model is discussed for the control of the steady-state levels of bioactive hormone under normal physiological conditions.Abbreviations DTE dithioerythritol - EDTA ethylenediaminetetraacetic acid - GAn gibberellin An - HPLC high-performance liquid chromatography - HSS high-speed supernatant - LSS low-speed supernatant - PMSF phenylmethane sulphonyl fluoride  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号