首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8086篇
  免费   1147篇
  国内免费   5559篇
  2024年   103篇
  2023年   375篇
  2022年   424篇
  2021年   474篇
  2020年   586篇
  2019年   687篇
  2018年   646篇
  2017年   643篇
  2016年   594篇
  2015年   591篇
  2014年   576篇
  2013年   708篇
  2012年   594篇
  2011年   540篇
  2010年   471篇
  2009年   623篇
  2008年   543篇
  2007年   617篇
  2006年   521篇
  2005年   483篇
  2004年   435篇
  2003年   429篇
  2002年   334篇
  2001年   304篇
  2000年   281篇
  1999年   285篇
  1998年   214篇
  1997年   202篇
  1996年   207篇
  1995年   188篇
  1994年   171篇
  1993年   126篇
  1992年   115篇
  1991年   102篇
  1990年   105篇
  1989年   102篇
  1988年   74篇
  1987年   56篇
  1986年   48篇
  1985年   33篇
  1984年   34篇
  1983年   10篇
  1982年   47篇
  1981年   20篇
  1980年   23篇
  1979年   19篇
  1978年   5篇
  1975年   4篇
  1973年   5篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 906 毫秒
191.
Seasonal occupancy of pastoralist campsites where livestock are bedded down at night has created islands of soil fertility within the coastal grassland of central Somalia. Soil organic matter, nitrogen, phosphorous, and potassium concentrations were greatest at the centre of the campsites and decreased towards the perimeter. The vegetation on the campsites differed from the surrounding grassland, presumably in response to soil fertility and intense grazing. The fast-growing, grazing-tolerant, stoloniferous grass, Cynodon dactylon , and the non-palatable, annual forbs, Cleome tenella and Gisekia pharnaceoides , occupied the centre of the campsites. The campsite perimeters were dominated by the slow-growing, grazing-sensitive, perennial plants Cencrhus ciliaris and Indigofera intricata .

Résumé


L'occupation saisonnière des lieux de campement où le bétail est rentré pendant la nuit a créé des ilots au sol fertile dans la partie côtière de la Somalie centrale. La matière organique du sol, les concentrations en azote, phosphore et potassium, étaient plus élevées au centre du campement et diminuaient vers la périphérie. La végétation à l'intérieur des campements différait de la prairie environnante, résultat sans doute de la fertilité du sol et du pâturage intense. L'herbe à la croissance rapide, résistante au pâturage et stolonifèhe, Cynodon dactylon , et les désagréables et annuelles Cleome tenella et Gisekia pharnaceoides , occupaient le centre des campements. Le périmètre des campements était dominé par les plantes à croissance lente, sensibles au pâturage et perennes, Cenchrus ciliaris et Indigofera intricata .  相似文献   
192.
The effects of salinisation of soil on Acacia catechu (Mimosaceae) were studied by means of emergence and growth of seedlings and pattern of mineral accumulation. A mixture of chlorides and sulphates of Na, K, Ca and Mg was added to the soil and salinity was maintained at 4.1, 6.3, 8.2,10.1 and 12.2 dSm−1. A negative relationship between proportion of seed germination and salt concentration was obtained. Seedlings did not emerge when soil salinity exceeded 10.1 dSm−1. Results suggested that this tree species is salt tolerant at the seed germination stage. Seedlings survived and grew up to soil salinity of 10.1 dSm−1, which suggests that this species is salt tolerant at the seedling stage too. Elongation of stem and root was retarded by increasing salt stress. Among the tissues, young roots and stem were most tolerant to salt stress and were followed by old roots and leaves, successively. Leaf tissue exhibited maximum reduction in dry mass production in response to increasing salt stress. However, production of young roots and death of old roots were found to be continuous and plants apparently use this process as an avoidance mechanism to remove excess ions and delay onset of ion accumulation in this tissue. This phenomenon, designated “fine root turnover”, is of importance to the mechanisms of salt tolerance. Plants accumulated Na in roots and were able to regulate transfer of Na ions to leaves. Stem tissues were a barrier for translocation of Na from root to leaf. Moreover, K was affected in response to salinity; it rapidly decreased in root tissues with increased salinisation. Nitrogen content decreased in all tissues (leaf, stem and root) in response to low water treatment and salinisation of soil. Phosphorus content significantly decreased, while Ca increased in leaves as soil salinity increased. Changes in tissue and whole plant accumulation patterns of the other elements tested, as well as possible mechanisms for avoidance of Na toxicity in this tree species during salinisation, are discussed.  相似文献   
193.
Overuse of molluscicides by farmers in arable systems can lead to environmental and product contamination. Here we assess a simple and inexpensive surface trapping method for monitoring populations of slugs (Deroceras reticulatum and Arion intermedius). This method was biased against small slugs, and against A. intermedius, when compared to direct soil sampling. Regression was used to model the relationship between the results of surface trapping and soil sampling methods. Spatial Analysis by Distance IndicEs (SADIE) algorithms were used to describe the spatial relationships between the two sets of samples. Using both traditional statistical methods and spatial statistics, the spatial information collected from surface traps was sufficient to identify patches and gaps in slug numbers and possibly to allow the spot application of slug control, and thus provide land managers who experience slug damage with a way of reducing molluscicides use, whilst maintaining slug control. Further improvements and applications of the model are discussed.  相似文献   
194.
A report is given of an adult caecilian, Scolecomorphus kirkii, found in the gut of a specimen of the snake Atractaspis aterrima from the Udzungwa Mountains, Tanzania. Both predator and prey are largely fossorial in soil, and their ecology is poorly known, such that this is the first reported predator of any scolecomorphid caecilian. The caecilian was ingested head first and much of the flesh from the anterior of the specimen had been digested. The prey/predator mass ratio is 0.48. This value is substantially higher than reported for A. aterrima from West Africa, and refutes the notion that this species feeds only on small prey. Most reported predators of caecilians are snakes, and a brief review is presented.  相似文献   
195.
We compared the Q10 relationship for root‐derived respiration (including respiration due to the root, external mycorrhizal mycelium and rhizosphere microorganisms) with that of mainly external ectomycorrhizal mycelium and that of bulk soil microorganisms without any roots present. This was studied in a microcosm consisting of an ectomycorrhizal Pinus muricata seedling growing in a sandy soil, and where roots were allow to colonize one soil compartment, mycorrhizal mycelium another compartment, and the last compartment consisted of root‐ and mycorrhiza‐free soil. The respiration rate in the bulk soil compartment was 30 times lower than in the root compartment, while that in the mycorrhizal compartment was six times lower. There were no differences in Q10 (for 5–15°C) between the different compartments, indicating that there were no differences in the temperature relationship between root‐associated and non‐root‐associated organisms. Thus, there are no indications that different Q10 values should be used for different soil organism, bulk soil or rhizosphere‐associated microorganisms when modelling the effects of global climate change.  相似文献   
196.
Reduced soil N availability under elevated CO2 may limit the plant's capacity to increase photosynthesis and thus the potential for increased soil C input. Plant productivity and soil C input should be less constrained by available soil N in an N2‐fixing system. We studied the effects of Trifolium repens (an N2‐fixing legume) and Lolium perenne on soil N and C sequestration in response to 9 years of elevated CO2 under FACE conditions. 15N‐labeled fertilizer was applied at a rate of 140 and 560 kg N ha?1 yr?1 and the CO2 concentration was increased to 60 Pa pCO2 using 13C‐depleted CO2. The total soil C content was unaffected by elevated CO2, species and rate of 15N fertilization. However, under elevated CO2, the total amount of newly sequestered soil C was significantly higher under T. repens than under L. perenne. The fraction of fertilizer‐N (fN) of the total soil N pool was significantly lower under T. repens than under L. perenne. The rate of N fertilization, but not elevated CO2, had a significant effect on fN values of the total soil N pool. The fractions of newly sequestered C (fC) differed strongly among intra‐aggregate soil organic matter fractions, but were unaffected by plant species and the rate of N fertilization. Under elevated CO2, the ratio of fertilizer‐N per unit of new C decreased under T. repens compared with L. perenne. The L. perenne system sequestered more 15N fertilizer than T. repens: 179 vs. 101 kg N ha?1 for the low rate of N fertilization and 393 vs. 319 kg N ha?1 for the high N‐fertilization rate. As the loss of fertilizer‐15N contributed to the 15N‐isotope dilution under T. repens, the input of fixed N into the soil could not be estimated. Although N2 fixation was an important source of N in the T. repens system, there was no significant increase in total soil C compared with a non‐N2‐fixing L. perenne system. This suggests that N2 fixation and the availability of N are not the main factors controlling soil C sequestration in a T. repens system.  相似文献   
197.
Land use induced changes of organic carbon storage in soils of China   总被引:29,自引:0,他引:29  
Using the data compiled from China's second national soil survey and an improved method of soil carbon bulk density, we have estimated the changes of soil organic carbon due to land use, and compared the spatial distribution and storage of soil organic carbon (SOC) in cultivated soils and noncultivated soils in China. The results reveal that ~ 57% of the cultivated soil subgroups ( ~ 31% of the total soil surface) have experienced a significant carbon loss, ranging from 40% to 10% relative to their noncultivated counterparts. The most significant carbon loss is observed for the non‐irrigated soils (dry farmland) within a semiarid/semihumid belt from northeastern to southwestern China, with the maximum loss occurring in northeast China. On the contrary, SOC has increased in the paddy and irrigated soils in northwest China. No significant change is observed for forest soils in southern China, grassland and desert soils in northwest China, as well as irrigated soils in eastern China. The SOC storage and density under noncultivated conditions in China are estimated to ~ 77.4 Pg (1015 g) and ~ 8.8 kg C m?2, respectively, compared to a SOC storage of ~ 70.3 Pg and an average SOC density of ~ 8.0 kg C m?2 under the present‐day conditions. This suggests a loss of ~ 7.1 Pg SOC and a decrease of ~ 0.8 kg C m?2 SOC density due to increasing human activities, in which the loss in organic horizons has contributed to ~ 77%. This total loss of SOC in China induced by land use represents ~ 9.5% of the world's SOC decrease. This amount is equivalent to ~ 3.5 ppmv of the atmospheric CO2 increase. Since ~ 78% of the currently cultivated soils in China have been degraded to a low/medium productivities and are responsible for most of the SOC loss, an improved land management, such as the development of irrigated and paddy land uses, would have a considerable potential in restoring the SOC storage. Assuming a restoration of ~ 50% of the lost SOC during the next 20–50 years, the soils in China would absorb ~ 3.5 Pg of carbon from the atmosphere.  相似文献   
198.
The effects of fire on soil‐surface carbon dioxide (CO2) efflux, FS, and microbial biomass carbon, Cmic, were studied in a wildland setting by examining 13‐year‐old postfire stands of lodgepole pine differing in tree density (< 500 to > 500 000 trees ha?1) in Yellowstone National Park (YNP). In addition, young stands were compared to mature lodgepole pine stands (~110‐year‐old) in order to estimate ecosystem recovery 13 years after a stand replacing fire. Growing season FS increased with tree density in young stands (1.0 µmol CO2 m?2 s?1 in low‐density stands, 1.8 µmol CO2 m?2 s?1 in moderate‐density stands and 2.1 µmol CO2 m?2 s?1 in high‐density stands) and with stand age (2.7 µmol CO2 m?2 s?1 in mature stands). Microbial biomass carbon in young stands did not differ with tree density and ranged from 0.2 to 0.5 mg C g?1 dry soil over the growing season; Cmic was significantly greater in mature stands (0.5–0.8 mg C g?1 dry soil). Soil‐surface CO2 efflux in young stands was correlated with biotic variables (above‐ground, below‐ground and microbial biomass), but not with abiotic variables (litter and mineral soil C and N content, bulk density and soil texture). Microbial biomass carbon was correlated with below‐ground plant biomass and not with soil carbon and nitrogen, indicating that plant activity controls not only root respiration, but Cmic pools and overall FS rates as well. These findings support recent studies that have demonstrated the prevailing importance of plants in controlling rates of FS and suggest that decomposition of older, recalcitrant soil C pools in this ecosystem is relatively unimportant 13 years after a stand replacing fire. Our results also indicate that realistic predictions and modeling of terrestrial C cycling must account for the variability in tree density and stand age that exists across the landscape as a result of natural disturbances.  相似文献   
199.
Abstract 1 The intensity of feeding by adult pine weevils Hylobius abietis (L.) on the stem bark of Norway spruce Picea abies (L.) Karst. seedlings planted in rows with a north–south orientation across a clear‐cutting, was measured throughout a growth season. The feeding was then correlated to light interception, soil temperature and distance to the nearest forest edge. 2 Feeding was at least twice as intense on seedlings in the central part of the clear‐cutting compared to those at the edges. The decline began approximatety 15 m from the edge and was of similar proportions on both the sun‐exposed and shaded sides. 3 Measures of global radiation and soil temperature correlated well with consumption on the shaded side. However, on the sun‐exposed side, there were no apparent correlations with global radiation or soil temperature that could explain the decline in consumed bark area. 4 We conclude that the decline in feeding towards the forest edges was mainly due to factors other than the microclimate variables we monitored. We suggest that the presence of roots of living trees along the forest edge may reduce damage to seedlings, since they provide an alternative source of food for the weevils. This alternative‐food hypothesis may also explain why seedlings in shelterwoods usually suffer less damage from pine weevils than seedlings in clear‐cuttings.  相似文献   
200.
Mercury evaporation from undisturbed iron‐humus podzol lysimeters was measured over 3 months after treatment with HgCl2 spiked with radioactive 203Hg. The relative evaporation rate from HgCl2 treated soils followed the sum of two exponential functions. Because evaporation asymptotically approaches zero with time, the integral of the fit curve represents the evaporative loss in percent of atmospheric deposition. For the soil investigated, about 5% of atmospheric Hg deposition was reemitted into the atmosphere. It is hypothesized that mercury evaporation can decrease the leaching of mercury in and from soil significantly; this effect is probably increasing with decreasing rain acidity or soil acidity. Mercury deposited as soluble salt remains susceptible to reemission to air for 300 d after incorporation into the soil matrix. Indications are found that Hg evaporation from soils in geological background areas predominantly derives from recent atmospheric Hg deposition and not from geological sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号