首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11548篇
  免费   434篇
  国内免费   833篇
  2023年   84篇
  2022年   131篇
  2021年   174篇
  2020年   155篇
  2019年   236篇
  2018年   207篇
  2017年   179篇
  2016年   183篇
  2015年   283篇
  2014年   389篇
  2013年   569篇
  2012年   369篇
  2011年   469篇
  2010年   330篇
  2009年   477篇
  2008年   547篇
  2007年   590篇
  2006年   669篇
  2005年   558篇
  2004年   486篇
  2003年   477篇
  2002年   408篇
  2001年   392篇
  2000年   381篇
  1999年   341篇
  1998年   384篇
  1997年   286篇
  1996年   261篇
  1995年   262篇
  1994年   257篇
  1993年   286篇
  1992年   227篇
  1991年   202篇
  1990年   221篇
  1989年   170篇
  1988年   138篇
  1987年   125篇
  1986年   113篇
  1985年   160篇
  1984年   154篇
  1983年   60篇
  1982年   89篇
  1981年   62篇
  1980年   61篇
  1979年   37篇
  1978年   26篇
  1977年   29篇
  1976年   22篇
  1974年   18篇
  1973年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
201.
Gravitropism of maize and rice coleoptiles was investigated with respect to its dependence on the angle of displacement or the initial stimulation angle (ISA). Close examination of curvature kinetics and the response to a drop in stimulation angle (SA) indicated that the gravtropic response during an early but substantial part of the curvature development is directly related to the ISA, there being no effect of the reduction of SA resulting from the curvature response itself. On the basis of this finding, the relationship between the steady SA and the curvature rate was determined. In maize, the curvature rate increased linearly with the sines of SAs up to an SA of 90 degrees. Rice coleoptiles, however, showed a saturation curve in the same range of SAs. The saturation profile was nearly identical between coleoptiles grown in air and those submerged in water, although the latter elongated much faster. Rice coleoptiles appeared to be far more sensitive to gravity than maize coleoptiles. It is concluded that the sensitivity to gravity, assessed through dependence on ISA, is a property inherent to a given gravitropic organ. Long-term measurements of curvature indicated that the coleoptiles bend back past the vertical. This overshooting was marked in submerged rice coleoptiles.  相似文献   
202.
Two thioredoxin cDNAs from soybean were isolated by screening an expression library using an anti-(plasma membrane) serum. The nucleotide sequences of the two cDNAs were found to be 89% identical. The polypeptides encoded by the two cDNAs, designated TRX1 and TRX2, contain a disulfide active site, as found in other thioredoxins. TRX1 was expressed as a fusion protein in Escherichia coli and shown to possess thiol-disufide interchange activity. Unlike other eukaryotic thioredoxins, these two soybean thioredoxins contain a putative transmembrane domain in their N-terminal regions. To determine subcellular location, the TRX1 was fused with a reporter epitope at its C-terminus and expressed in transgenic tobacco plants. The fusion protein was co-purified with plasma membrane markers 1,3-glucan synthase and vanadate-sensitive ATPase, indicating the plasma membrane location of TRX1. When the reporter epitope was inserted between the start codon and the transmembrane domain in the N-terminus, the fusion protein was found in the soluble fraction, possibly due to disruption of the transmembrane domain by the highly hydrophilic epitope sequence. Taken together, our results demonstrate that soybean TRX1 is a plasma membrane-bound thioredoxin, which is most likely anchored to the membrane through the N-terminal transmembrane domain. It is known that plant plasma membranes contain various proteins with thiol-disulfide interchange activity. The soybean thioredoxins reported here are the first group of such proteins to be characterized at the molecular level. However, the biological function of the plasma membrane-bound thioredoxin remains to be determined.  相似文献   
203.
A cDNA encoding a new phytocystatin isotype named BCPI-1 was isolated from a cDNA library of Chinese cabbage flower buds. The BCPI-1 clone encodes 199 amino acids resulting in a protein much larger than other known phytocystatins. BCPI-1 has an unusually long C-terminus. A BCPI-1 fusion protein expressed in Escherichia coli strongly inhibits the enzymatic activity of papain, a cysteine proteinase. Genomic Southern blot analysis revealed that the BCPI gene is a member of a small multi-gene family in Chinese cabbage. Northern blot analysis showed that it is differentially expressed in the flower bud, leaf and root.  相似文献   
204.
Fine root demography in alfalfa (Medicago sativa L.)   总被引:1,自引:1,他引:0  
In perennial forages like alfalfa (Medicago sativa L.), repeated herbage removal may alter root production and mortality which, in turn, could affect deposition of fixed N in soil. Our objective was to determine the extent and patterns of fine-diameter root production and loss during the year of alfalfa stand establishment. The experiment was conducted on a loamy sand soil (Udorthentic Haploboroll) in Minnesota, USA, using horizontally installed minirhizotrons placed directly under the seeded rows at 10, 20, and 40 cm depths in four replicate blocks. We seeded four alfalfa germplasms that differed in N2 fixation capacity and root system architecture: Agate alfalfa, a winter hardy commercially-available cultivar; Ineffective Agate, which is a non-N2-fixing near isoline of Agate; a new germplasm that has few fibrous roots and strong tap-rooted traits; and a new germplasm that has many fibrous roots and a strongly branched root system architecture. Video images collected biweekly throughout the initial growing season were processed using C-MAP-ROOTS software.More than one-half of all fine roots in the upper 20 cm were produced during the first 7 weeks of growth. Root production was similar among germplasms, except that the highly fibrous, branch-rooted germplasm produced 29% more fine roots at 20 cm than other germplasms. In all germplasms, about 7% of the fine roots at each depth developed into secondarily thickened roots. By the end of the first growing season, greatest fine root mortality had occurred in the uppermost depth (48%), and least occurred at 40 cm (36%). Survival of contemporaneous root cohorts was not related to soil depth in a simple fashion, although all survivorship curves could be described using only five rates of exponential decline. There was a significant reduction in fine root mortality before the first herbage harvest, followed by a pronounced loss (average 22%) of fine roots at the 10- and 20-cm depths in the 2-week period following herbage removal. Median life spans of these early-season cohorts ranged from 58 to 131 days, based on fitted exponential equations. At all depths, fine roots produced in the 4 weeks before harvest (early- to mid-August) tended to have shorter median life spans than early-season cohorts. Similar patterns of fine root mortality did not occur at the second harvest. Germplasms differed in the pattern, but not the ultimate extent, of fine root mortality. Fine root turnover during the first year of alfalfa establishment in this experiment released an estimated 830 kg C ha–1 and 60 kg N ha–1, with no differences due to N2 fixation capacity or root system architecture.  相似文献   
205.
There have been no studies of the effects of soil P deficiency on pearl millet (Pennisetum glaucum (L.) R. Br.) photosynthesis, despite the fact that P deficiency is the major constraint to pearl millet production in most regions of West Africa. Because current photosynthesis-based crop simulation models do not explicitly take into account P deficiency effects on leaf photosynthesis, they cannot predict millet growth without extensive calibration. We studied the effects of soil addition on leaf P content, photosynthetic rate (A), and whole-plant dry matter production (DM) of non-water-stressed, 28 d pearl millet plants grown in pots containing 6.00 kg of a P-deficient soil. As soil P addition increased from 0 to 155.2 mg P kg–1 soil, leaf P content increased from 0.65 to 7.0 g kg–1. Both A and DM had maximal values near 51.7 mg P kg–1 soil, which corresponded to a leaf P content of 3.2 g kg–1. Within this range of soil P addition, the slope of A plotted against stomatal conductance (gs) tripled, and mean leaf internal CO2 concentration ([CO2]i) decreased from 260 to 92 L L–1, thus indicating that P deficiency limited A through metabolic dysfunction rather than stomatal regulation. Light response curves of A, which changed markedly with P leaf content, were modelled as a single substrate, Michaelis-Menten reaction, using quantum flux as the substrate for each level of soil P addition. An Eadie-Hofstee plot of light response data revealed that both KM, which is mathematically equivalent to quantum efficiency, and Vmax, which is the light-saturated rate of photosynthesis, increased sharply from leaf P contents of 0.6 to 3 g kg–1, with peak values between 4 and 5 g P kg–1. Polynomial equations relating KM and Vmax, to leaf P content offered a simple and attractive way of modelling photosynthetic light response for plants of different P status, but this approach is somewhat complicated by the decrease of leaf P content with ontogeny.  相似文献   
206.
M. A. Topa 《Plant and Soil》1996,182(2):259-265
Short-term 32P uptake experiments were conducted with intact seedlings of loblolly pine (Pinus taeda L.) to examine possible seed source variation in net accumulation of 32P in roots and shoots, and in rates of unidirectional influx. Seed source had a highly significant effect on biomass and P concentrations of shoots and roots. Seedlings from two seed sources representing fast-growing populations (a broadly-adapted and wet-site seed source) accumulated over 60% more total seedling P than smaller seedlings from a drought-hardy seed source, reflecting higher biomass and root P concentrations. Rates of unidirectional 32P influx in seedlings from the drought-hardy seed source were more than twice the rates of the seedlings from the broadly-adapted seed source. However, after 24 h in labeled uptake solution, net accumulation of 32P was similar, suggesting that rates of unidirectional efflux from roots of the drought-hardy seed source were also high. Although there were no significant differences in biomass and tissue P concentrations between the two fast-growing seed sources, rates of unidirectional influx in seedlings from the broadly-adapted seed source were 42% lower than rates in seedlings from the wet-site source. Yet, after 24 h in labeled uptake solution, net accumulation of 32P in seedlings from the broadly-adapted seed source was 50% higher. Unidirectional efflux out of the root may regulate net uptake of P as much, if not more, than influx in loblolly pine seedlings-at least under high-P growth conditions. The results in this study do not support previous studies with herbaceous plants suggesting that fast-growing species typically exhibit higher rates of nutrient uptake than slow-growing species.  相似文献   
207.
Many crop models relate the allocation of dry matter between shoots and roots exclusively to the crop development stage. Such models may not take into account the effects of changes in environment on allocation, unless the allocation parameters are altered. In this paper a crop model with a dynamic allocation parameter for dry matter between shoots and roots is described. The basis of the model is that a plant allocates dry matter such that its growth is maximized. Consequently, the demand and supply of carbon, nitrogen, and water is maintained in balance. This model supports the hypothesis that a functional equilibrium exists between shoots and roots.This paper explains the mathematical computation procedure of the crop model. Moreover, an analysis was made of the ability of a crop model to simulate plant dry matter production and allocation of dry matter between plant organs. The model was tested using data from a greenhouse experiment in which spring wheat (Triticum aestivum L.) was grown under different soil moisture and nitrogen (N) levels.Generally, the model simulations agreed well with data recorded for total plant dry matter. For validation data the coefficient of determination (r2) between simulated and measured shoot dry weight was 0.96. For the validation treatments r2 was slightly lower, 0.94. In addition to dry matter production the model succeeded satisfactorily in simulating the dry weight of different plant organs. The response of simulated root to shoot ratio to the level of soil moisture was mainly in accordance with the measured data. In contrast, the simulated ratio seemed to be insensitive to the changes in the levels soil N concentration used in the experiment.The data used in the present study were not extensive, and more data are needed to validate the model. However, the results showed that the model responses to the changes in soil N and water level were realistic and mostly agreed with the data. Thus, we suggest that the model and the method employed to allocate dry matter between roots and shoots are useful when modelling the growth of crops under N and water limited conditions.  相似文献   
208.
Summary Effects of cycloheximide (CHM) on preprophase bands (PPBs) of microtubules (MTs) and on prophase spindle MTs in root tip cells of onion (Allium cepa L.) were examined. When root tip cells were treated with 36 M CHM for 0.5–4 h, the population of cells with a PPB did not decrease markedly although the population of mitotic cells and that of prophase cells with a PPB gradually decreased to half of the control root tips. In prophase cells treated with 11 and 36 M CHM for 2 h, the width of the PPB was 1.4 times broader than that in the prophase PPB without CHM. Electron microscopic observation on the cross section of the PPB showed that the number of MTs and the distance between adjacent MTs in prophase PPBs treated with CHM were similar to those in the early developmental stage of PPBs without CHM. The bipolar spindle, that appeared in late prophase was not seen in prophase cells treated with 11 M or higher concentrations of CHM for 2 h. In order to examine differences of perinuclear MT arrangement between CHM treated and non-treated prophase cells, arrangement of perinuclear MTs was examined by confocal laser scanning microscopy. In control cells without CHM, MTs appeared on the nuclear surface with several branched or cross over type MT foci in the cytoplasm when broad PPB formation started. These MT foci were replaced by the aster type MT foci, from which several MTs radiated along the nuclear surface. The aster type MT foci gradually gathered to form a bipolar spindle. MTs connecting the spindle pole region and the PPB were seen in late prophase. In CHM-treated cells (11-360 M for 2 h), branched and cross over type MT foci were prominent, even in prophase cells with well condensed chromosomes. Neither linkages of MTs between the spindle pole region and the PPB nor aster type MT foci were seen. These observations showed that CHM prevents the bundling of MTs in the PPB and also inhibits the formation of aster type MT foci that is essential for bipolar spindle development.  相似文献   
209.
Quantitative triat loci (QTLs) for yield and related traits in rice were mapped based on RFLP maps from two indica/indica F2 populations, Tesanai 2/CB and Waiyin 2/CB. In Tesanai 2/CB, 14 intervals carrying QTLs for eight traits were detected, including 3 for grain weight per plant (GWT), 2 for number of panicles per plant (NP), 2 for number of grains per panicle (NG), 1 for total number of spikelets per panicle (TNS), 1 for spikelet fertility (SF), 3 for 1000-grain weight (TGWT), 1 for spikelet density (SD), and 1 for number of first branches per main panicle. The 3 QTLs for GWT were located on chromosomes 1, 2, and 4, with 1 in each chromosome. The additive effect of the single locus ranged from 2.0 g to 9.1 g. A major gene (np4) for NP was detected on chromosome 4 within the interval of RG143–RG214, about 4cM for RG143, and this locus explained 26.1% of the observed phenotypic variance for NP. The paternal allele of this locus was responsible for reduced panicles per plant (3 panicles per plant). In another population, Waiyin 2/CB, 12 intervals containing QTLs for six of the above-mentioned traits were detected, including 3 for GWT, 2 for each of NP, TNS, TGWT and SD, 1 for SF. Three QTLs for GWT were located on chromosome 1, 4, and 5, respectively. The additive effect of the single locus for GWT ranged from 6.7 g to 8.8 g, while the dominance effect was 1.7–11.5 g. QTL mapping in two populations with a common male parent is compared and discussed.  相似文献   
210.
Resistance to Plasmodiophora brassicae Woron, the causal fungus of clubroot, was examined in an F2 population of a cross between a clubroot-resistant kale (Brassica oleracea L. var. acephala) and a susceptible cauliflower (Brassica oleracea L. var. botrytis). QTL detection was performed with RAPD markers. Two resistance notations, carried out at different times after inoculation, were used. Three markers were associated with these two notations and three were specifically linked to only one notation. QTL analysis suggests the existence of at least two genetic mechanisms implicated in the resistance phenomenon.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号