首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2968篇
  免费   145篇
  国内免费   133篇
  3246篇
  2024年   11篇
  2023年   33篇
  2022年   49篇
  2021年   51篇
  2020年   62篇
  2019年   80篇
  2018年   86篇
  2017年   67篇
  2016年   64篇
  2015年   79篇
  2014年   126篇
  2013年   327篇
  2012年   68篇
  2011年   135篇
  2010年   84篇
  2009年   122篇
  2008年   124篇
  2007年   130篇
  2006年   120篇
  2005年   110篇
  2004年   110篇
  2003年   104篇
  2002年   102篇
  2001年   73篇
  2000年   67篇
  1999年   56篇
  1998年   72篇
  1997年   62篇
  1996年   39篇
  1995年   60篇
  1994年   32篇
  1993年   53篇
  1992年   40篇
  1991年   44篇
  1990年   39篇
  1989年   45篇
  1988年   38篇
  1987年   31篇
  1986年   27篇
  1985年   33篇
  1984年   39篇
  1983年   23篇
  1982年   26篇
  1981年   18篇
  1980年   16篇
  1979年   22篇
  1978年   18篇
  1977年   8篇
  1975年   4篇
  1973年   7篇
排序方式: 共有3246条查询结果,搜索用时 0 毫秒
921.
A biocatalyst for the removal of sulfite from alcoholic beverages   总被引:2,自引:0,他引:2  
The presence of sulfites in alcoholic beverages, particularly in wines, can cause allergic responses with symptoms ranging from mild gastrointestinal problems to life threatening anaphylactic shock in a substantial portion of the population. We have developed a simple and inexpensive biocatalytic method that employs wheatgrass (Triticum aestivum) chloroplasts for the efficient oxidation of sulfites in wines to innocuous sulfates. A sufficiently high rate of sulfite oxidation was obtained in the presence of ethanol at concentrations commonly found in most wines. Crude chloroplast preparations at a concentration as low as 5 mg/mL were capable of reducing sulfite in commercial white wines from 150 ppm to under 7.5 ppm within 3 hours. A 93% removal of sulfite in commercial red wines was observed with 1 mg/mL chloroplasts within 45 min. Optimal sulfite removal efficiency was observed at pH 8.5 and was promoted by illumination, indicating the participation of light-induced photosynthetic electron transport processes in sulfite oxidation. Overall, this work indicates that biocatalytic oxidation using wheatgrass chloroplasts can be employed to remove sulfites from beverages prior to consumption.  相似文献   
922.
Fourier transform Raman spectroscopy has been used to investigate the chemical changes taking place during lipid oxidation in several edible oils. Oxidative degradation of six vegetable oils was accelerated by heating at 160 degrees C. Formation of aldehydes was detected, and saturated as well as alpha,beta-unsaturated aldehydes could be identified with the help of pure component spectra. The formation of conjugated double bond systems and the isomerisation of cis to trans double bonds was observed in the C=C stretching region and found to follow a distinct pattern for the different oils. It was possible to associate these differences to the fatty acid composition. The time-dependent intensity changes in certain Raman bands were compared to conventional parameters used to determine the extent of oxidation in oils, such as anisidine value and K(270), and showed good correlation.  相似文献   
923.
Alcohol metabolism by Acholeplasma and Mycoplasma cell suspensions was determined using changes in dissolved oxygen tension to monitor oxygen uptake. All seven Acholeplasma test species oxidised ethanol and (where tested) propanol, butanol and pentanol. The rate of oxidation, at any particular substrate concentration, decreased with increasing alcohol molecular mass. Amongst 20 Mycoplasma species tested, M. agalactiae, M. bovis, M. dispar, M. gallisepticum, M. pneumoniae and M. ovipneumoniae oxidised ethanol. Propanol was also oxidised by M. dispar and isopropanol by M. agalactiae, M. bovis and M. ovipneumoniae. Isopropanol was oxidised at particularly high rates (V(max)100 nmol O(2) taken up min(-1) mg cell protein(-1)) and with a relatively high affinity (K(m) value<2 mM); oxygen uptake was consistent with oxidation to acetone. The significance of alcohol oxidation is unclear, as it would not be predicted to lead to ATP synthesis.  相似文献   
924.
Anaerobic oxidation of alkanes by newly isolated denitrifying bacteria   总被引:11,自引:0,他引:11  
The capacity of denitrifying bacteria for anaerobic utilization of saturated hydrocarbons (alkanes) was investigated with n-alkanes of various chain lengths and with crude oil in enrichment cultures containing nitrate as electron acceptor. Three distinct types of denitrifying bacteria were isolated in pure culture. A strain (HxN1) with oval-shaped, nonmotile cells originated from a denitrifying enrichment culture with crude oil and was isolated with n-hexane (C6H14). Another strain (OcN1) with slender, rod-shaped, motile cells was isolated from an enrichment culture with n-octane (C8H18). A third strain (HdN1) with oval, somewhat pleomorphic, partly motile cells originated from an enrichment culture with aliphatic mineral oil and was isolated with n-hexadecane (C16H34). Cells of hexane-utilizing strain HxN1 grew homogeneously in the growth medium and did not adhere to the alkane phase, in contrast to the two other strains. Quantification of substrate consumption and cell growth revealed the capacity for complete oxidation of alkanes under strictly anoxic conditions, with nitrate being reduced to dinitrogen. Received: 3 August / Accepted: 6 October 1999  相似文献   
925.
The polychaete worms Marenzelleria viridis (Verrill 1873) and Hediste diversicolor (O.F. Müller) form the main part of the macro-zoobenthos in soft-bottomed shallow inlets of the Baltic Sea. Due to high eutrophication within these waters the animals are exposed to low oxygen and high sulphide concentrations. Specimens of both species from a low salinity location (S 8 ‰) were compared concerning their physiological abilities in coping with this hostile environment. Sulphide detoxification occurred in both polychaetes even during severe hypoxia with the main end-product being thiosulphate. In absence of sulphide nearly no end-products of anaerobic metabolism were found in the worms during moderate hypoxia (pO2=7 kPa). In presence of hydrogen sulphide, succinate, a sensitive indicator of anaerobic metabolism, was accumulated in higher amounts at low sulphide concentrations (0.3 mM) already. Oxygen consumption and ATP production was determined in isolated mitochondria of both species. Both polychaetes were able to perform enzymatic sulphide oxidation in the mitochondria at concentrations up to 50 μM. This process was coupled with oxidative phosphorylation. At least in M. viridis sulphide respiration was not completely inhibited by cyanide, suggesting an alternative oxidation pathway, which by-passes the cytochrome-c-oxidase. The two species did not differ in the rate of sulphide detoxification, but H. diversicolor produced about as twice as much ATP from mitochondrial sulphide oxidation. Differences in mitochondrial sulphide oxidation are probably related to the different life strategies of the worms.  相似文献   
926.
The paraoxonase (PON) gene family in humans has three members, PON1, PON2, and PON3. Their physiological role(s) and natural substrates are uncertain. We developed a baculovirus-mediated expression system, suitable for all three human PONs, and optimized procedures for their purification. The recombinant PONs are glycosylated with high-mannose-type sugars, which are important for protein stability but are not essential for their enzymatic activities. Enzymatic characterization of the purified PONs has revealed them to be lactonases/lactonizing enzymes, with some overlapping substrates (e.g., aromatic lactones), but also to have distinctive substrate specificities. All three PONs metabolized very efficiently 5-hydroxy-eicosatetraenoic acid 1,5-lactone and 4-hydroxy-docosahexaenoic acid, which are products of both enzymatic and nonenzymatic oxidation of arachidonic acid and docosahexaenoic acid, respectively, and may represent the PONs' endogenous substrates. Organophosphates are hydrolyzed almost exclusively by PON1, whereas bulky drug substrates such as lovastatin and spironolactone are hydrolyzed only by PON3. Of special interest is the ability of the human PONs, especially PON2, to hydrolyze and thereby inactivate N-acyl-homoserine lactones, which are quorum-sensing signals of pathogenic bacteria. None of the recombinant PONs protected low density lipoprotein against copper-induced oxidation in vitro.  相似文献   
927.
Through a positional cloning approach, the thioredoxin-interacting protein gene (Txnip) was recently identified as causal for a form of combined hyperlipidemia in mice (Bodnar, J. S., A. Chatterjee, L. W. Castellani, D. A. Ross, J. Ohmen, J. Cavalcoli, C. Wu, K. M. Dains, J. Catanese, M. Chu, S. S. Sheth, K. Charugundla, P. Demant, D. B. West, P. de Jong, and A. J. Lusis. 2002. Positional cloning of the combined hyperlipidemia gene Hyplip1. Nat. Genet. 30: 110-116). We now show that Txnip-deficient mice in the fed state exhibit a metabolic profile similar to fasted mice, including increased levels of plasma ketone bodies and free fatty acids, decreased glucose, and increased hepatic expression of peroxisome proliferator-activated receptor-gamma coactivator-1alpha, phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and acyl-CoA oxidase. Dramatic differences in the expression of key metabolic enzymes were also observed in other tissues, and the fat-to-muscle ratio of Txnip-deficient mice was increased by approximately 40%. We demonstrate an effect of Txnip on the redox status, as the Txnip-deficient mice in the fed state had a significant increase in the ratio of NADH to NAD(+). Surprisingly, we observed that Txnip-deficient mice and wild-type mice had similar levels of thioredoxin activity, suggesting that the effects of Txnip deficiency may be mediated in part by other interactions. These results indicate a role for Txnip in the metabolic response to feeding and the maintenance of the redox status.  相似文献   
928.
Tocopherols are considered to be powerful antioxidants, but prooxidative effects are discussed for higher concentrations. The aim of this in vitro study was to investigate the dose-dependent inhibition of oxidation product formation caused by alpha-tocopherol, and to estimate the range of maximum antioxidant activity of alpha-tocopherol at different stages of lipid oxidation. Alpha-tocopherol was added to rapeseed oil triglycerides (ROTG, purified rapeseed oil) in concentrations ranging from 25 to 1500 micromol/kg ROTG. The inhibitory activity of alpha-tocopherol increased up to a concentration of 100 micromol/kg ROTG. A concentration of 125 micromol alpha-tocopherol/ kg ROTG did not result in an improved antioxidant effect. The formation of volatile secondary oxidation products followed the same trend, and the maximum inhibitory effect was also found for 100 micromol alpha-tocopherol/kg. Further, concentrations between 250 and 1500 micromol alpha-tocopherol/kg ROTG clearly caused increased formation of hydroperoxides during the induction period. However, compared to the control, all tested alpha-tocopherol concentrations resulted in a reduction of hydroperoxide formation and no prooxidative effects were observed.  相似文献   
929.
AIM: To exploit the fermentative hydrogen generation and direct hydrogen oxidation for the generation of electric current from the degradation of cellulose. METHODS AND RESULTS: Utilizing the metabolic activity of the mesophilic anaerobe Clostridium cellulolyticum and the thermophilic Clostridium thermocellum we show that electricity generation is possible from cellulose fermentation. The current generation is based on an in situ oxidation of microbially synthesized hydrogen at platinum-poly(tetrafluoroaniline) (Pt-PTFA) composite electrodes. Current densities of 130 mA l(-1) (with 3 g cellulose per litre medium) were achieved in poised potential experiments under batch and semi-batch conditions. Conclusions: The presented results show that electricity generation is possible by the in situ oxidation of hydrogen, product of the anaerobic degradation of cellulose by cellulolytic bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: For the first time, it is shown that an insoluble complex carbohydrate like cellulose can be used for electricity generation in a microbial fuel cell. The concept represents a first step to the utilization of macromolecular biomass components for microbial electricity generation.  相似文献   
930.
The redox titration of extracellular hemoglobin of Glossoscolex paulistus (Annelidea) was investigated in different pH conditions and after dissociation induced by pressure. Oxidation increased with increasing pH, as shown by the reduced amount of ferricyanide necessary for the oxidation of hemoglobin. This behavior was the opposite of that of vertebrate hemoglobins. The potential of half oxidation (E1 / 2) changed from − 65.3 to + 146.8 mV when the pH increased from 4.50 to 8.75. The functional properties indicated a reduction in the log P50 from 1.28 to 0.28 in this pH range. The dissociation at alkaline pH or induced by high pressure, confirmed by HPLC gel filtration, suggested that disassembly of the hemoglobin could be involved in the increased potential for oxidation. These results suggest that the high stability and prolonged lifetime common to invertebrate hemoglobins is related to their low tendency to oxidize at acidic pH, in contrast to vertebrate hemoglobins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号