首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20089篇
  免费   2186篇
  国内免费   820篇
  23095篇
  2024年   156篇
  2023年   593篇
  2022年   810篇
  2021年   1082篇
  2020年   862篇
  2019年   1022篇
  2018年   922篇
  2017年   721篇
  2016年   799篇
  2015年   941篇
  2014年   1293篇
  2013年   1671篇
  2012年   924篇
  2011年   1072篇
  2010年   765篇
  2009年   943篇
  2008年   931篇
  2007年   864篇
  2006年   802篇
  2005年   753篇
  2004年   718篇
  2003年   524篇
  2002年   509篇
  2001年   413篇
  2000年   323篇
  1999年   300篇
  1998年   296篇
  1997年   272篇
  1996年   212篇
  1995年   180篇
  1994年   230篇
  1993年   162篇
  1992年   165篇
  1991年   105篇
  1990年   118篇
  1989年   74篇
  1988年   78篇
  1987年   58篇
  1986年   58篇
  1985年   56篇
  1984年   55篇
  1983年   45篇
  1982年   45篇
  1981年   41篇
  1980年   22篇
  1979年   27篇
  1978年   19篇
  1976年   15篇
  1975年   13篇
  1974年   16篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
  1. Download : Download high-res image (176KB)
  2. Download : Download full-size image
Highlights
  • •Proteomic analysis of cerebrospinal fluid and identification of synaptic component.
  • •Use of super resolution microscopy to verify synapse-specificity in human tissue.
  • •Selective reaction monitoring MS (SRM) of synaptic panel in 3 cohorts of Alzheimer's disease cerebrospinal fluid.
  • •Synaptic protein changes precede tau in preclinical Alzheimer's disease.
  相似文献   
32.
The purpose of our study is to understand the protective role of miR-455-3p against abnormal amyloid precursor protein (APP) processing, amyloid beta (Aβ) formation, defective mitochondrial biogenesis/dynamics and synaptic damage in AD progression. In-silico analysis of miR-455-3p has identified the APP gene as a putative target. Using mutant APP cells, miR-455-3p construct, biochemical and molecular assays, immunofluorescence and transmission electron microscopy (TEM) analyses, we studied the protective effects of miR-455-3p on – 1) APP regulation, amyloid beta (Aβ)(1–40) & (1–42) levels, mitochondrial biogenesis & dynamics; 3) synaptic activities and 4) cell viability & apoptosis. Our luciferase reporter assay confirmed the binding of miR-455-3p at the 3’UTR of APP gene. Immunoblot, sandwich ELISA and immunostaining analyses revealed that the reduced levels of the mutant APP, Aβ(1–40) & Aβ(1–42), and C99 by miR-455-3p. We also found the reduced levels of mRNA and proteins of mitochondrial biogenesis (PGC1α, NRF1, NRF2, and TFAM) and synaptic genes (synaptophysin and PSD95) in mutant APP cells; on the other hand, mutant APP cells that express miR-455-3p showed increased mRNA and protein levels of biogenesis and synaptic genes. Additionally, expression of mitochondrial fission proteins (DRP1 and FIS1) were decreased while the fusion proteins (OPA1, Mfn1 and Mfn2) were increased by miR-455-3p. Our TEM analysis showed a decrease in mitochondria number and an increase in the size of mitochondrial length in mutant APP cells transfected with miR-455-3p. Based on these observations, we cautiously conclude that miR-455-3p regulate APP processing and protective against mutant APP-induced mitochondrial and synaptic abnormalities in AD.  相似文献   
33.
High density lipoprotein (HDL) has attracted the attention of biomedical community due to its well-documented role in atheroprotection. HDL has also been recently implicated in the regulation of islets of Langerhans secretory function and in the etiology of peripheral insulin sensitivity. Indeed, data from numerous studies strongly indicate that the functions of pancreatic β-cells, skeletal muscles and adipose tissue could benefit from improved HDL functionality. To better understand how changes in HDL structure may affect diet-induced obesity and type 2 diabetes we aimed at investigating the impact of Apoa1 or Lcat deficiency, two key proteins of peripheral HDL metabolic pathway, on these pathological conditions in mouse models. We report that universal deletion of apoa1 or lcat expression in mice fed western-type diet results in increased sensitivity to body-weight gain compared to control C57BL/6 group. These changes in mouse genome correlate with discrete effects on white adipose tissue (WAT) metabolic activation and plasma glucose homeostasis. Apoa1-deficiency results in reduced WAT mitochondrial non-shivering thermogenesis. Lcat-deficiency causes a concerted reduction in both WAT oxidative phosphorylation and non-shivering thermogenesis, rendering lcat?/? mice the most sensitive to weight gain out of the three strains tested, followed by apoa1?/? mice. Nevertheless, only apoa1?/? mice show disturbed plasma glucose homeostasis due to dysfunctional glucose-stimulated insulin secretion in pancreatic β-islets and insulin resistant skeletal muscles. Our analyses show that both apoa1?/? and lcat?/? mice fed high-fat diet have no measurable Apoa1 levels in their plasma, suggesting no direct involvement of Apoa1 in the observed phenotypic differences among groups.  相似文献   
34.
Recently, numerous microRNAs (miRNAs) have been considered as key players in the regulation of neuronal processes. The purpose of the present study is to explore the effect of miR-25 on hippocampal neuron injury in Alzheimer's disease (AD) induced by amyloid β (Aβ) peptide fragment 1 to 42 (Aβ1-42) via Kruppel-like factor 2 (KLF2) through the nuclear factor-E2-related factor 2 (Nrf2) signaling pathway. A mouse model of AD was established through Aβ1-42 induction. The underlying regulatory mechanisms of miR-25 were analyzed through treatment of miR-25 mimics, miR-25 inhibitors, or small interfering RNA (siRNA) against KLF2 in hippocampal tissues and cells isolated from AD mice. The targeting relationship between miR-25 and KLF2 was predicted using a target prediction program and verified by luciferase activity determination. MTT assay was used to evaluate the proliferative ability and flow cytometry to detect cell cycle distribution and apoptosis. KLF2 was confirmed as a target gene of miR-25. When the mice were induced by Aβ1-42, proliferation was suppressed while apoptosis was promoted in hippocampal neurons as evidenced by lower levels of KLF2, Nrf2, haem oxygenase, glutathione S transferase α1, glutathione, thioredoxin, and B-cell lymphoma-2 along with higher bax level. However, such alternations could be reversed by treatment of miR-25 inhibitors. These findings indicate that miR-25 may inhibit hippocampal neuron proliferation while promoting apoptosis, thereby aggravating hippocampal neuron injury through downregulation of KLF2 via the Nrf2 signaling pathway.  相似文献   
35.
Non‐human primates are susceptible to many bacteria, some of which bear zoonotic potential. We report the pathologic features of spontaneous fulminating meningoencephalitis by Staphylococcus aureus in a captive infant golden‐headed lion tamarin (Leontopithecus chrysomelas) from Brazil.  相似文献   
36.
Pravastatin sodium on triggering receptor expressed on myeloid cell-1 (TREM-1)-mediated inflammation in human peripheral blood mononuclear cells (PBMCs) has been poorly investigated. In this study, we isolated PBMCs from the peripheral blood samples of patients with chronic obstructive pulmonary disease, treated the cells with pravastatin sodium, and determined a concentration at which more than 90% cells could survive. Then we treated cells with 10?ng/ml of lipopolysaccharide, added with 10, 50, 100?μM of pravastatin sodium combined with or without LR-12, a known TREM-1 inhibitor. The expression of TREM-1 was determined by quantitative RT-PCR. The levels of TREM-1, IL-6, and TNF-α in cell culture supernatant were measured with ELISA. Simultaneously, NF-κB signaling pathway-related protein p-p65 and p-IκBα were detected by Western blot assay. Results demonstrated that pravastatin sodium significantly mitigated lipopolysaccharide-stimulated TREM-1 over-expression at mRNA and protein levels dose-dependently. Elevated IL-6 and TNF-α levels changed synchronously. LR-12 inhibited the TREM-1 over-expression and inflammatory factor production but did not show extra synergistic effect to pravastatin. Lipopolysaccharide induced phospho-p65 and -IκBα over-expression was weakened significantly when cells were treated with pravastatin sodium. In conclusion, pravastatin could inhibit TREM-1-medieted inflammation and NF-κB signaling pathway was involved.  相似文献   
37.
38.
Autophagy is a vital negative factor regulating cellular senescence. Purple sweet potato color (PSPC), one type of flavonoid, has been demonstrated to suppress endothelial senescence and restore endothelial function in diabetic mice by inhibiting the nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing protein 3 (NLRP3) inflammasome. However, the roles of autophagy in the inflammatory response during endothelial senescence are unknown. Here, we found that PSPC augmented autophagy to restrict high-glucose-induced premature endothelial senescence. In addition, PSPC administration impaired endothelium aging in diabetic mice by increasing autophagy. Inhibition of autophagy accelerated endothelial senescence, while enhancement of autophagy delayed senescence. Moreover, deactivation of the NLRP3 inflammasome triggered by PSPC was autophagy-dependent. Autophagy receptor microtubule-associated protein 1 light chain 3 and p62 interacted with the inflammasome component NLRP3, suggesting that autophagosomes target the NLRP3 inflammasome and deliver it to the lysosome for degradation. Altogether, PSPC amplified cellular autophagy, subsequently attenuated NLRP3 inflammasome activity and finally delayed endothelial senescence to ameliorate cardiovascular complication. These results suggest a potential therapeutic target in senescence-related cardiovascular diseases.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号