首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11279篇
  免费   1261篇
  国内免费   1150篇
  2024年   61篇
  2023年   354篇
  2022年   474篇
  2021年   678篇
  2020年   769篇
  2019年   924篇
  2018年   633篇
  2017年   462篇
  2016年   533篇
  2015年   514篇
  2014年   722篇
  2013年   863篇
  2012年   466篇
  2011年   605篇
  2010年   406篇
  2009年   570篇
  2008年   522篇
  2007年   530篇
  2006年   439篇
  2005年   464篇
  2004年   401篇
  2003年   357篇
  2002年   307篇
  2001年   188篇
  2000年   153篇
  1999年   146篇
  1998年   126篇
  1997年   103篇
  1996年   93篇
  1995年   92篇
  1994年   93篇
  1993年   74篇
  1992年   71篇
  1991年   47篇
  1990年   47篇
  1989年   34篇
  1988年   36篇
  1987年   35篇
  1986年   37篇
  1985年   39篇
  1984年   41篇
  1983年   28篇
  1982年   31篇
  1981年   26篇
  1980年   31篇
  1979年   14篇
  1978年   11篇
  1977年   10篇
  1976年   10篇
  1974年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
In the pyrimidine biosynthetic pathway, CTP synthetase catalyses the conversion of uridine 5-triphosphate (UTP) to cytidine 5-triphosphate (CTP). In the yeast Saccharomyces cerevisiae, the URA7 gene encoding this enzyme was previously shown to be nonessential for cell viability. The present paper describes the selection of synthetic lethal mutants in the CTP biosynthetic pathway that led us to clone a second gene, named URA8, which also encodes a CTP synthetase. Comparison of the predicted amino acid sequences of the products of URA7 and URA8 shows 78% identity. Deletion of the URA8 gene is viable in a haploid strain but simultaneous presence of null alleles both URA7 and URA8 is lethal. Based on the codon bias values for the two genes and the intracellular concentrations of CTP in strains deleted for one of the two genes, relative to the wild-type level, URA7 appears to be the major gene for CTP biosynthesis. Nevertheless, URA8 alone also allows yeast growth, at least under standard laboratory conditions.  相似文献   
102.
The Saccharomyces cerevisiae DIS2S1/GLC7 gene encodes a type 1 protein phosphatase indispensable for cell proliferation. We found that introduction of a multicopy DIS2S1 plasmid impaired growth of cells with reduced activity of the cAMP-dependent protein kinase. In order to understand further the interaction between the two enzymes, a temperature-sensitive mutation in the DIS2S1 gene was isolated. The mutant accumulated less glycogen than wild type at the permissive temperature, indicating that activity of the Dis2s1 protein phosphatase is attenuated by the mutation. Furthermore, the dis2s1 ts mutation was shown to be suppressed by a multicopy plasmid harboring PDE2, a gene for cAMP phosphodiesterase. These results indicate that the Ras-cAMP pathway interacts genetically with the DIS2S1/GLC7 gene.  相似文献   
103.
Isolated intact eyespot apparatuses, the photoreceptive organelles involved in blue-light-mediated photoresponses of flagellate green algae, were analyzed regarding their carotenoid composition. Carotenoids from the eyespot apparatuses of Spermatozopsis similis were identified by high-performance liquid chromatography, visible-light absorption spectra, mass spectroscopy and by 1H-nuclear magnetic resonance spectroscopy (carotenes), and compared with those of whole-cell extracts. Both extracts contained ,-carotene, ,-carotene (formerly -carotene), lycopene, lutein, zeaxanthin, violaxanthin and all-E-and 9-Z-neoxanthin. The relative carotenoid compositions, however, differed significantly. A twofold relative increase in the total carotene level was evident in the fraction enriched in eyespot apparatuses. This was mainly due to an increase in the monocyclic ,-carotene and the aliphatic lycopene, whereas the relative content of ,-carotene remained unchanged. On the other hand a relative decrease in the total xanthophyll content, especially of lutein and the epoxidic carotenoid neoxanthin, was observed in the eyespot apparatuses compared with the whole-cell extracts. The decrease of the latter resulted almost solely from a reduction of the 9-Z-rather than the all-E-isomer. The bulk of the carotenes is thought to be localized in the highly organized eyespot lipid globules, which act as a combined quarter-wave interference reflector and absorption screen for the photoreceptor in green algae. The enrichment of ,-carotene and lycopene in the eyespot apparatuses, extending the range of visible light absorption to longer wavelengths, represents an adaptation of the screen to the retinal-based photoreceptor of flagellate green algae and is one of the prerequisites for maximal directional sensitivity of the eyespot apparatus.Abbreviations 1H-NMR nuclear magnetic resonance - IUPAC International Union of Pure and Applied Chemistry - VIS visible absorption spectra This work was supported by the Deutsche Forschungsgemeinschaft (G.K. and M.M.). M.G. was supported by a fellowship from the Norwegian Research Council of Science and Humanities.  相似文献   
104.
Conformationally constraining selectable peptides onto a suitable scaffold that enables their conformation to be predicted or readily determined by experimental techniques would considerably boost drug discovery process by reducing the gap between the discovery of a peptide lead and the design of a peptidomimetic with a more desirable pharmacological profile. With this in mind, we designed the minibody, a 61-residue β-protein aimed at retaining some desirable features of immunogloblin variable domains, such as tolerance to sequence variability in selected regions of the protein and predictability of main chain conformation of the same regions, based on the ‘canonical structures’ model. To test the ability of the minibody scaffold to support functional sites we also designed a metal binding version of the protein by suitably choosing the sequences of its loops. The minibody was produced both by chemical syntyhesis and expression in E. coli and charactgerized by size exclusion chromatography, UV CD (circular dichroism) spectroscopy and metal binding activity. All our data supported the model, but a more detailed structural characterization of the molecule was impaired by its low soubility. We were able to overcome this problem both by further; mutagenesis of the framework and by addition of a solublizing motif. The minibody is being used to select constrained human IL-6 peptidic ligands from a library displayed on the surface of the f1 bacteriophage.  相似文献   
105.
Some goals of bioelectronics—interfacing biology and electronics — are the understanding of supramolecular bioprocesses and the construction of supramolecular devices. The principles for the design and fabrication of machineries with functional components of molecular size are inspired by reflecting on biosystems, and it seems important to consider such principles. We first discuss attempts to construct supramolecular machines, and then we consider the bacterial reaction centre as an example where supramolecular engineering helps to elucidate a bioprocess. We then discuss possible mechanisms leading to the emergence of life-like systems in the light of the basic principles used to design supramolecular devices. Finally, we reflect on prospects in molecular engineering inspired by studying the emergence of life-like systems.  相似文献   
106.
Metabolic engineering of plant secondary products   总被引:5,自引:0,他引:5  
Plants interact with their environment by producing a diverse array of secondary metabolites. Many of these compounds are valued for their medicinal, industrial or agricultural properties. Other secondary products are toxic or otherwise undesirable and can reduce the commercial value of crops. Gene transfer technology offers new opportunities to modify directly plant secondary product synthesis through metabolic engineering. This article reviews some of the strategies which have been used to increase or decrease the synthesis of specific plant metabolites, as well as methods for expanding the biosynthetic capabilities of individual species.  相似文献   
107.
Pseudomonas sp. strain CF600 is an efficient degrader of phenol and methylsubstituted phenols. These compounds are degraded by the set of enzymes encoded by the plasmid locateddmpoperon. The sequences of all the fifteen structural genes required to encode the nine enzymes of the catabolic pathway have been determined and the corresponding proteins have been purified. In this review the interplay between the genetic analysis and biochemical characterisation of the catabolic pathway is emphasised. The first step in the pathway, the conversion of phenol to catechol, is catalysed by a novel multicomponent phenol hydroxylase. Here we summarise similarities of this enzyme with other multicomponent oxygenases, particularly methane monooxygenase (EC 1.14.13.25). The other enzymes encoded by the operon are those of the well-knownmeta-cleavage pathway for catechol, and include the recently discoveredmeta-pathway enzyme aldehyde dehydrogenase (acylating) (EC 1.2.1.10). The known properties of thesemeta-pathway enzymes, and isofunctional enzymes from other aromatic degraders, are summarised. Analysis of the sequences of the pathway proteins, many of which are unique to themeta-pathway, suggests new approaches to the study of these generally little-characterised enzymes. Furthermore, biochemical studies of some of these enzymes suggest that physical associations betweenmeta-pathway enzymes play an important role. In addition to the pathway enzymes, the specific regulator of phenol catabolism, DmpR, and its relationship to the XylR regulator of toluene and xylene catabolism is discussed.  相似文献   
108.
Pyridine and its derivatives have been found as pollutants in the environment. Although alkylpyridines constitute the largest class of pyridines contaminating the environment, little information is available concerning the fate and transformation of these compounds. In this investigation ethylpyridines have been used as model compounds for investigating the biodegradability of alkylpyridines. A mixed culture of ethylpyridine-degrading microorganisms was obtained from a soil that had been exposed to a variety of pyridine derivatives for several decades. The enrichment culture was able to degrade 2-, 3-, and 4-ethylpyridine (100 mg/L) at 28° C and pH 7 within two weeks under aerobic conditions. The degradation rate was greatest for 2-ethylpyridine and least for 3-ethylpyridine. Transformation of ethylpyridines was dependent on substrate concentration, pH, and incubation temperature. Studies on the metabolic pathway of 4-ethylpyridine revealed two products; these chemicals were identified by MS and NMR analyses as 4-ethyl-2(1H)-pyridone and 4-ethyl-2-piperidone. 6-Ethyl-2(1H)-pyridone was determined to be a product of 2-ethylpyridine degradation. These results indicate that the transformation mechanism of ethylpyridines involves hydroxylation and reduction of the aromatic ring before ring cleavage.  相似文献   
109.
新型双分子细胞因子融合蛋白研究进展   总被引:7,自引:0,他引:7  
细胞因子通过相互协调、相互制约在体内发挥着重要的免疫调节作用,利用细胞因子的这一特点,近年来国内外设计并构建了新型的第二代细胞因子,即利用基因工程技术和蛋白质工程技术将两种细胞因子合二为一,使之成为具有多功能的嵌合蛋白新品种,为细胞因子的理论研究及临床应用提供了新的手段与方法.  相似文献   
110.
Effects of dark incubation at different temperatures were studied on dormancy and respiratory activity of seeds of Sisymbrium officinale (L.) Scop. Because germination of this species absolutely depends on the simultaneous action of light and nitrate, changes in dormancy could be studied in darkness without the interference of early germination events. Upon the start of incubation rates of O2 uptake and CO2 release rose. This was followed by a gradual decrease until stable levels of O2 uptake and CO2 release were achieved. Seeds kept for prolonged periods at 24°C, showed neither a change in germination capacity nor in rates of O2 uptake and CO2 release. Respiratory quotients were 0.55–0.7. The initial rise in O2 uptake correlated with the rate of water uptake and with breaking of primary dormancy. However, the subsequent decline in O2 uptake was not generally linked to induction of secondary dormancy. An increased O2 uptake was not required during breaking of secondary dormancy. It is concluded that changes in dormancy are not generally related to changes in respiratory activity. However, germination strongly depends on respiration. The increase in O2 uptake started well before radicle protrusion. A far red irradiation only reversed this increase when it was given before germination escaped from its red light antagonising action. The contribution of different respiratory pathways was followed during prolonged incubation at 24°C in darkness. KCN at 1.5 mM was needed to inhibit the cytochrome pathway (CP) and benzohydroxamic acid (BHAM) at 30 mM to inhibit the alternative pathway (AP). These concentrations did not exert any side effects. Electron flow was predominantly via the CP, maximally 10% was via the AP. Flow through the CP declined during the first 6 days and residual respiration remained constant. Therefore, the contribution of residual respiration became relatively more important with prolonged incubation. KCN at concentrations that almost completely inhibited flow through the CP, did not dramatically reduce germination. BHAM already inhibited germination at concentrations that do not inhibit oxygen uptake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号