首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   13篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   6篇
  2018年   10篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   18篇
  2013年   13篇
  2012年   11篇
  2011年   14篇
  2010年   6篇
  2009年   18篇
  2008年   15篇
  2007年   18篇
  2006年   16篇
  2005年   12篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1988年   1篇
排序方式: 共有205条查询结果,搜索用时 24 毫秒
181.
In this study we examined the effect of polyunsaturated fatty acids (PUFAs), in particular of docosahexaenoic acid (DHA), on calcium homeostasis in isolated adult rat cardiomyocytes exposed to KCl, ET-1 and anoxia. Free [Ca(2+)](i) in rat cardiomyocytes was 135.7 +/- 0.5 nM. Exposure to 50 mM KCl or 100 nM ET-1 resulted in a rise in free [Ca(2+)](i) in freshly isolated cells (465.4 +/- 15.6 nM and 311.3 +/- 12.6 nM, respectively) and in cultured cells (450.8 +/- 14.8 nM and 323.5 +/- 14.8 nM respectively). An acute treatment (20 minutes) with 10 microM DHA significantly reduced the KCl- and ET-1-induced [Ca(2+)](i) increase (300.9 +/- 18.1 nM and 232.08 +/- 11.8 nM, respectively). This reduction was greater after chronic treatment with DHA (72 h; 257.7 +/- 13.08 nM and 192.18 +/- 9.8 nM, respectively). Rat cardiomyocytes exposed to a 20 minute superfusion with anoxic solution, obtained by replacing O(2) with N(2) in gas mixture, showed a massive increase in cytosolic calcium (1200.2 +/- 50.2 nM). Longer exposure to anoxia induced hypercontraction and later death of rat cardiomyocytes. Preincubation with DHA reduced the anoxic effect on [Ca(2+)](i) (498.4 +/- 7.3 nM in acute and 200.2 +/- 12.2 nM in chronic treatment). In anoxic conditions 50 mM KCl and 100 nM ET-1 produced extreme and unmeasurable increases of [Ca(2+)](i.) Preincubation for 20 minutes with DHA reduced this phenomenon (856.1 +/- 20.3 nM and 782.3 +/- 7.6 nM, respectively). This reduction is more evident after a chronic treatment with DHA (257.7 +/- 10.6 nM and 232.2 +/- 12.5 nM, respectively). We conclude that in rat cardiomyocytes KCl, ET-1 and anoxia interfered with intracellular calcium concentrations by either modifying calcium levels or impairing calcium homeostasis. Acute, and especially chronic, DHA administration markedly reduced the damage induced by calcium overload in those cells.  相似文献   
182.
The mechanism of cell death which occurs during Chagas' cardiopathy is disputed. To address this issue we analyzed the molecular pathways implicated in the death of cardiomyocytes during T. cruzi invasion and found that they undergo apoptosis during both in vitro and in vivo infections. However, the death rates and onset were related to the parasite stocks belonging to different biodemes, which can be correlated to the different histological inflammation findings that have already been reported. Our in vitro data provide additional support for this hypothesis since higher levels and earlier apoptosis induction were noted during the interaction with the Dm28c (type I) as compared to the Y and CL stocks (type II). Modifications of the surface carbohydrates of the infected cardiomyocytes were observed and these molecular events may be acting as "eat me" tags for their final engulfment by macrophages and/or other non-professional phagocytes. The analysis of other host cell types showed that the in vitro infection of fibroblasts did not result in host apoptosis even when a highly infective stock was used. Conversely, infected macrophages undergo apoptosis but at a higher degree than cardiomyocytes. Apoptotic intracellular parasites were observed to varied extents depending on the T. cruzi stock, which was related to the parasite invasion and proliferation. In summary, our results show that during T. cruzi infection, the extent of apoptosis varies according to the host cell type and the parasite stocks. The apoptosis of both host and T. cruzi can contribute to the silent spreading and persistence of the parasite without triggering an exacerbated inflammatory response.The present study was supported by grants from the Fundação de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ), the Conselho Nacional Desenvolvimento Científico e Tecnológico (CNPq), INSERM and PAPESIII/FIOCRUZ. Support by the "INSERM-FIOCRUZ convention" is also acknowledged.  相似文献   
183.
Recent studies suggest that there are strong parallels between development and patterning of the vertebrate vascular system and the nervous system. While previous observations reported generation of vascular and neuronal progenitors from embryonic stem (ES) cells, the question of parallel development of vascular and neuronal cells in the same culture has not yet been investigated. Mouse D3 ES cells were cultured for 4 days in differentiation medium IMDM with 15% FBS in 100 mm non-adhesive Petri dishes to allow cells to aggregate and form embryoid bodies. At day 5, fibronectin or all-trans retinoic acid with fibronectin was added to the culture. On day 9, the embryoid bodies were seeded on poly-L-ornithine/fibronectin-coated plates. After plating, half of the plates were treated with laminin for 3 days and maintained for 1 week in Neurobasal media with B27. Here we show that ES cells differentiate into interconnected rhythmically contracting aggregates of functional cardiomyocytes and neurons. Double immunofluorescence with anti-phospholamban, anti-SERCA2 antibodies to detect cardiomyocytes and with anti-MAP2 antibodies to detect neurons revealed the cell aggregates consisting entirely of cardiomyocytes with neuronal cells located on the periphery or covering the aggregate's surface. The observed concurrent development of cardiomyocytes and neurons suggests bidirectional communication between both cell types. We propose that crosstalk between cardiovascular and neuronal progenitors is an important mechanism for the development of both systems.  相似文献   
184.
Calcium transients and contractions of cardiac myocytes consist of phasic component, relaxing spontaneously independently of membrane voltage and of the tonic component (TC) relaxing only upon repolarization. Experimental data reviewed in this article suggest that most Ca(2+) activating TC is released from sarcoplasmic reticulum (SR) via the ryanodine receptors (RyRs). Most likely these RyRs are activated by sustained Ca(2+) influx. However, its route may differ depending on species and state of the cells. It seems that in rat RyRs responsible for TC are activated by the sustained Ca(2+) current. In guinea-pig the blockers of Ca(2+) current or reverse mode Na(+)/Ca(2+) exchange do not inhibit TC, so these routes seem unlikely. In myocytes of the failing human hearts TC is activated mostly via the reverse mode Na(+)/Ca(2+) exchange and contribution of SR is negligible. The mechanism of TC in the normal human cardiomyocytes has not been investigated. Thus, despite investigation of TC for half a century many problems concerning the mechanism of its activation and maintenance as well as its physiological meaning remain unsolved.  相似文献   
185.
The soy-derived phytoestrogen genistein (GEN) has received attention for its potential benefits on the cardiovascular system by providing direct protection to cardiomyocytes against pathophysiological stresses. Here, we employed a proteomic approach to study the concentration-dependent effects of GEN treatments on cardiomyocytes. Cultured HL-1 cardiomyocytes were treated with low (1μM) and high (50μM) concentrations of GEN. Proteins were pre-fractionated by sequential hydrophilic/hydrophobic extraction and both protein fractions from each treatment group were separated by 2D gel electrophoresis (2DE). Overall, approximately 2,700 spots were visualized on the 2D gels. Thirty-nine and 99 spots changed in volume relative to controls (p<0.05) following the low- and high-concentration GEN treatments, respectively. From these spots, 25 and 62 protein species were identified by ESI-MS/MS and Mascot database searching, respectively. Identified proteins were further categorized according to their functions and possible links to cardioprotection were discussed. MetaCore gene ontology analysis suggested that 1μM GEN significantly impacted the anti-apoptosis process, and that both the low and high concentrations of GEN influenced the glucose catabolic process and regulation of ATPase activity. This proteomics study provides the first global insight into the molecular events triggered by GEN treatment in cardiomyocytes.  相似文献   
186.
187.
Previous studies have demonstrated loss/reduction of dystrophin in cardiomyocytes in both acute and chronic stages of experimental Trypanosoma cruzi (T. cruzi) infection in mice. The mechanisms responsible for dystrophin disruption in the hearts of mice acutely infected with T. cruzi are not completely understood. The present in vivo and in vitro studies were undertaken to evaluate the role of inflammation in dystrophin disruption and its correlation with the high mortality rate during acute infection. C57BL/6 mice were infected with T. cruzi and killed 14, 20 and 26 days post infection (dpi). The intensity of inflammation, cardiac expression of dystrophin, calpain-1, NF-κB, TNF-α, and sarcolemmal permeability were evaluated. Cultured neonatal murine cardiomyocytes were incubated with serum, collected at the peak of cytokine production and free of parasites, from T. cruzi-infected mice and dystrophin, calpain-1, and NF-κB expression analyzed. Dystrophin disruption occurs at the peak of mortality and inflammation and is associated with increased expression of calpain-1, TNF-α, NF-κB, and increased sarcolemmal permeability in the heart of T. cruzi-infected mice at 20 dpi confirmed by in vitro studies. The peak of mortality occurred only when significant loss of dystrophin in the hearts of infected animals occurred, highlighting the correlation between inflammation, dystrophin loss and mortality.  相似文献   
188.
目的:心肌上的离子通道蛋白与心肌损伤有很大的关系,本研究通过低硒喂养对C57BL/6小鼠心肌组织损伤的影响及其对钾通道蛋白的改变。方法:将实验小鼠分为4组:对照组,低硒30天组,低硒90天组和低硒180天组。采用低硒饲料(硒含量0.0045μg/g)喂养的方法建立低硒小鼠模型,对照组给予正常饲料(硒含量0.256μg/g),与低硒组同时喂养;硒含量的测定和HE染色方法观察心肌损伤情况,WesternBlotting方法检测其钾通道蛋白的表达。结果:低硒饲料喂养小鼠的心脏硒含量与正常饲料喂养的硒含量相比明显降低(P〈0.01);并出现轻微的心肌损伤,钾通道蛋白的表达量在低硒30天组,低硒90天组和低硒180天组下调(P〈0.01)。结论:成功建立低硒小鼠模型,低硒能引起小鼠心肌损伤,这种改变可能有心脏的钾通道蛋白的表达水平有关。  相似文献   
189.
目的:研究丹参酮Ⅱ A(TanshinoneⅡA)通过调节microRNA-1抗心肌细胞缺氧损伤的作用。方法:原代培养新生大鼠心肌细胞,建立心肌细胞缺氧模型。MTT法检测心肌细胞存活率(%);TUNEL、流式细胞术测心肌细胞凋亡率;激光共聚焦检测心肌细胞内钙离子[Ca2+]i浓度的变化情况。结果:MTT结果显示丹参酮ⅡA对缺氧心肌细胞及过表达miR-1引起心肌细胞损伤具有保护作用。丹参酮ⅡA增加了缺氧心肌细胞的存活率(P0.05),同时给予丹参酮ⅡA和miR-1组与单独miR-1损伤组相比较,存活率也明显升高,呈现剂量依赖性。TUNEL结果显示丹参酮ⅡA可以抑制缺氧诱导的细胞凋亡,丹参酮ⅡA可以明显降低由缺氧导致的细胞凋亡率(P0.05)。共聚焦检测结果显示,缺氧损伤的心肌细胞内[Ca2+]i显著升高1322.72±5.16(vs正常对照组,P0.05),丹参酮ⅡA则有效抑制由缺氧引起过高的[Ca2+]i。miR-1诱导的细胞内[Ca2+]i升高至1349.33±62.63,约为正常对照组的1.96倍,而丹参酮ⅡA则有效抑制胞内过高的[Ca2+]i,从而发挥心肌保护作用。结论:丹参酮ⅡA可能是通过抑制胞内miR-1的表达,参与对钙离子浓度的调控,发挥其对心肌细胞的保护作用。  相似文献   
190.
Tissue engineering in cardiovascular regenerative therapy requires the development of an efficient oxygen supply system for cell cultures. However, there are few studies which have examined human cardiomyocytes in terms of oxygen consumption and metabolism in culture. We developed an oxygen measurement system equipped with an oxygen microelectrode sensor and estimated the oxygen consumption rates (OCRs) by using the oxygen concentration profiles in culture medium. The heart is largely made up of cardiomyocytes, cardiac fibroblasts, and cardiac endothelial cells. Therefore, we measured the oxygen consumption of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs), cardiac fibroblasts, human cardiac microvascular endothelial cell and aortic smooth muscle cells. Then we made correlations with their metabolisms. In hiPSC-CMs, the value of the OCR was 0.71 ± 0.38 pmol/h/cell, whereas the glucose consumption rate and lactate production rate were 0.77 ± 0.32 pmol/h/cell and 1.61 ± 0.70 pmol/h/cell, respectively. These values differed significantly from those of the other cells in human heart. The metabolism of the cells that constitute human heart showed the molar ratio of lactate production to glucose consumption (L/G ratio) that ranged between 1.97 and 2.2. Although the energy metabolism in adult heart in vivo is reported to be aerobic, our data demonstrated a dominance of anaerobic glycolysis in an in vitro environment. With our measuring system, we clearly showed the differences in the metabolism of cells between in vivo and in vitro monolayer culture. Our results regarding cell OCRs and metabolism may be useful for future tissue engineering of human heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号