首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   13篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   6篇
  2018年   10篇
  2017年   4篇
  2016年   5篇
  2015年   7篇
  2014年   18篇
  2013年   13篇
  2012年   11篇
  2011年   14篇
  2010年   6篇
  2009年   18篇
  2008年   15篇
  2007年   18篇
  2006年   16篇
  2005年   12篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1988年   1篇
排序方式: 共有205条查询结果,搜索用时 62 毫秒
111.
Cardiac myocytes isolated and cultured from 11 day chick embryos present a Ca(2+)-dependent regulatory volume decrease (RVD) when exposed to hyposmotic stimulus. The RVD of myocytes from different embryonic stages were analyzed to evaluate their physiological performance through development. Among the several embryonic stages analyzed (6, 11, 16 and 19 days) only 19 day cardiac myocytes present a greater RVD when compared with 11 day (considered as control), the other ages showed no difference in the regulatory response. As it is known that RVD is Ca(2+) dependent, we decided to investigate the transient free Ca(2+) response during the hyposmotic swelling of the 11 and 19 day stages. The 11 day cardiac myocyte showed a transient 40% increase in intracellular free Ca(2+) when submitted to hyposmotic solutions, and the free Ca(2+) returned to baseline levels while the cells remained in hyposmotic buffer. However, the intracellular free Ca(2+) transient in the 19 day cells during hyposmotic challenge increases 100% and instead of returning to baseline levels, declines to 55% above control, well after the 11 day transient has returned to baseline. Also, quantitative fluorescence microscopy revealed that 19 day cardiac myocytes have more sarcoplasmic reticulum (SR) Ca(2+) ATPase sites per cell as compared to the 11 day cells. Our findings suggest that 19 day cells have more developed intracellular Ca(2+) stores (SR). By evoking the mechanism of Ca(2+) induced Ca(2+) release, the cells have more free Ca(2+) available for signaling the RVD during hyposmotic swelling.  相似文献   
112.

Aims

Disturbance of mitochondrial function significantly contributes to the myocardial injury that occurs during reperfusion. Increasing evidence suggests a role of intra-mitochondrial cyclic AMP (cAMP) signaling in promoting respiration and ATP synthesis. Mitochondrial levels of cAMP are controlled by type 10 soluble adenylyl cyclase (sAC) and phosphodiesterase 2 (PDE2), however their role in the reperfusion-induced injury remains unknown. Here we aimed to examine whether sAC may support cardiomyocyte survival during reperfusion.

Methods and results

Adult rat cardiomyocytes or rat cardiac H9C2 cells were subjected to metabolic inhibition and recovery as a model of simulated ischemia and reperfusion. Cytosolic Ca2+, pH, mitochondrial cAMP (live-cell imaging), and cell viability were analyzed during a 15-min period of reperfusion. Suppression of sAC activity in cardiomyocytes and H9C2 cells, either by sAC knockdown, by pharmacological inhibition or by withdrawal of bicarbonate, a natural sAC activator, compromised cell viability and recovery of cytosolic Ca2+ homeostasis during reperfusion. Contrariwise, overexpression of mitochondria-targeted sAC in H9C2 cells suppressed reperfusion-induced cell death. Analyzing cAMP concentration in mitochondrial matrix we found that inhibition of PDE2, a predominant mitochondria-localized PDE isoform in mammals, during reperfusion significantly increased cAMP level in mitochondrial matrix, but not in cytosol. Accordingly, PDE2 inhibition attenuated reperfusion-induced cardiomyocyte death and improved recovery of the cytosolic Ca2+ homeostasis.

Conclusion

sAC plays an essential role in supporting cardiomyocytes viability during reperfusion. Elevation of mitochondrial cAMP pool either by sAC overexpression or by PDE2 inhibition beneficially affects cardiomyocyte survival during reperfusion.  相似文献   
113.
Sphere formation has been utilized as a way to isolate multipotent stem/progenitor cells from various tissues. However, very few studies on bone marrow-derived spheres have been published and assessed their multipotentiality. In this study, multipotent marrow cell populations were isolated using a three-step method. First, after elimination of hematopoietic cells, murine marrow-derived adherent cells were cultured in plastic dishes until small cells gradually appeared and multiplied. Cells were then cultured under non-adherent conditions and formed spheres that were immunopositive for a neural precursor marker, nestin. RT-PCR analysis also revealed that the spheres were positive for nestin in addition to PPARgamma, osf2, SOX9, and myoD, which are markers of precursors of adipocytic, osteoblastic, chondrocytic, and skeletal myeloblastic lineages, respectively. Finally, spheres were dissociated into single cells and expanded in adherent cultures. Under appropriate induction conditions, the sphere-derived cells acquired the phenotypic properties in vitro of neurons, skeletal myoblasts, and beating cardiomyocytes, as well as adipocytes, osteoblasts, and chondrocytes. Next, sphere-derived cells were transplanted into murine myocardial infarction models. One month later, they had become engrafted as cardiomyocytes, and cardiac catheterization showed significant functional improvements. Thus, sphere-derived cells represent a new approach to enhance the multi-differentiation potential of murine bone marrow.  相似文献   
114.
目的:探讨MitoQ对高糖诱导的心肌细胞线粒体功能影响。方法:常规获取与纯化SD大鼠新生仔鼠心肌细胞,分为对照组、高糖组、实验组。对照组用含10%血清的DMEM培养基(5.5 mmol/L葡萄糖)培养;高糖组用含血清的高糖DMEM培养基(33mmol/L葡萄糖)培养;实验组用含血清的高糖DMEM培养基(33 mmol/L葡萄糖)和MitoQ。MTT法检测心肌细胞存活率,氯离子荧光探针检测细胞内氯离子浓度,流式细胞术检测各组心肌细胞凋亡率,超氧化物阴离子荧光染色检测心肌细胞活性氧(reactive oxygen,ROS)含量,利用ATP检测试剂盒检测心肌细胞中的ATP水平,Western blot法检测心肌细胞胱天蛋白酶3(caspase-3)蛋白水平。结果:与对照组相比,高糖组的心肌细胞增凋亡率、ROS产生、氯离子相对浓度均明显增加,ATP显著降低(P0.05),细胞内caspase-3蛋白表达显著上升(P0.05);与高糖组相比,实验组凋亡率降低,ROS产生、细胞内caspase-3蛋白表达均显著降低(P0.05)。结论:高糖会引起心肌细胞线粒体障碍,造成心肌细胞凋亡,MitoQ可降低细胞内ROS和caspase-3水平,抑制心肌细胞凋亡,改善心肌细胞线粒体功能。  相似文献   
115.
近来发现Cl^-通道抑制剂9-羧酸蒽(9-AC)有是一种新型的磷酸酶抑制剂。本研究观察了蛋白激酶A(PKA)、蛋白激酶C(PKC)及非特异性磷酸酶抑制剂对9-AC诱导的新生大鼠培养心肌细胞c-fos表达的影响。同时利用放免法测定了细胞内cAMP和cGMP的变化,旨在探讨影响9-AC诱导c-fos的胞内因素。结果显示,9-AC(0.5mmol/L)可显提高心肌细胞FOS样免疫阳性细胞数及染色强度。该作用不PCK抑制剂Chelerythine(1μmol/L)预处理的影响,而用PKA抑制剂H-89(10μmol/L)预处理心肌细胞,可减弱9-AC的作用,但FOS蛋白的表达量仍显高于基础水平。与之相比,相同条件下异丙肾上腺素(Iso)对FOS蛋白表达的诱导作用不受PKC抑制剂影响,但PKA抑制剂可使之完全抑制。非特异性磷酸酶抑制剂钒酸盐(VO4,1.5mmol/L)亦可显增强FOS的表达,9-AC不能使该作用进一步增强。放免测定显示9-AC(0.5mmol/L)对胞内cAMP和cGMP无显性影响。而Iso(10μmol/L)可明显升高cAMP的浓度。结果表明,9-AC可诱导培养的新生大鼠心肌细胞表达c-fos,其胞内作用途径与PKA的活性部分相关,而与cAMP、cGMP水平及PKC无关,上述作用特点及其与非特异性磷酸酶抑制剂相似的作用提示9-AC诱导c-fos表达可能是它影响了参与核内基因表达的蛋白转录因子的脱磷酸化过程。  相似文献   
116.
收集FCGM,用0.2μm微孔滤膜除去细胞碎片,再经Diaflo-YM-10滤膜超滤浓缩,截留分子量大于10 KD的FCGM,行Sephadex-G75凝胶层析,得到Ⅰ、Ⅱ两个洗脱峰。经生物学鉴定,证明Ⅰ峰洗脱液具有明显的心肌营养活性。将凝胶层析Ⅰ峰洗脱液透析、浓缩,行PAK200SW高效液相色谱分析,结果得到五个不同的洗脱峰。经生物学鉴定,第Ⅰ峰具有生物活性。将已行半制备高效液相色谱分析Ⅰ峰洗脱液透析、浓缩,再行高效液相色谱分析,结果获单一峰。用该单一峰物质行SDS-PAGE电泳,以标准蛋白质作对照,可知该单一峰中含有数种物质,分子量在25-35 KD。  相似文献   
117.
目的:心肌上的离子通道蛋白与心肌损伤有很大的关系,本研究通过低硒喂养对C57BL/6小鼠心肌组织损伤的影响及其对钾通道蛋白的改变。方法:将实验小鼠分为4组:对照组,低硒30天组,低硒90天组和低硒180天组。采用低硒饲料(硒含量0.0045μg/g)喂养的方法建立低硒小鼠模型,对照组给予正常饲料(硒含量0.256μg/g),与低硒组同时喂养;硒含量的测定和HE染色方法观察心肌损伤情况,Western Blotting方法检测其钾通道蛋白的表达。结果:低硒饲料喂养小鼠的心脏硒含量与正常饲料喂养的硒含量相比明显降低(P0.01);并出现轻微的心肌损伤,钾通道蛋白的表达量在低硒30天组,低硒90天组和低硒180天组下调(P0.01)。结论:成功建立低硒小鼠模型,低硒能引起小鼠心肌损伤,这种改变可能有心脏的钾通道蛋白的表达水平有关。  相似文献   
118.
The contractile behavior of cardiomyocytes can be monitored by measuring their action potentials, and the analysis is essential for screening the safety of potential drugs. However, immobilizing cardiac cells on a specific electrode is considerably complicated. In this study, we demonstrate that scanning electrochemical microscopy (SECM) can be used to analyze rapid topographic changes in beating cardiomyocytes in a standard culture dish. Various cardiomyocyte contraction parameters and oxygen consumption based on cell respiration could be determined from SECM data. We also confirmed that cellular changes induced by adding the cardiotonic agent digoxin were conveniently monitored by this SECM system. These results show that SECM can be a potentially powerful tool for use in drug development for cardiovascular diseases.  相似文献   
119.

Background

PUMA (p53-up-regulated modulator of apoptosis), an apoptosis regulated gene, increased during endoplasmic reticulum stress. However, the expression of PUMA in cardiomyocytes under mechanical stress is little known. We aimed to investigate the regulation mechanism of PUMA expression and apoptosis induced by mechanical stress in cardiomyocytes.

Methods

Aorta-caval (AV) shunt was performed in adult Wistar rats to induce volume overload. Rat neonatal cardiomyocytes were stretched by vacuum to 20% of maximum elongation at 60 cycles/min.

Results

PUMA protein and mRNA were up-regulated in the shunt group as compared with sham group. The increased PUMA protein expression and apoptosis induced by shunt was reversed by treatment with atorvastatin at 30 mg/kg/ day orally for 7 days. TUNEL assay showed that treatment with atorvastatin inhibited the apoptosis induced by volume overload. Cyclic stretch significantly enhanced PUMA protein and gene expression. Addition of c-jun N-terminal kinase (JNK) inhibitor SP600125, JNK small interfering RNA (siRNA) and interferon-γ (INF-γ) antibody 30 min before stretch reduced the induction of PUMA protein. Gel shift assay demonstrated that stretch increased the DNA binding activity of interferon regulatory factor-1. Stretch increased, while PUMA-Mut plasmid, SP600125 and INF-γ antibody abolished the PUMA promoter activity induced by stretch. PUMA mediated apoptosis induced by stretch was reversed by PUMA siRNA and atorvastatin.

Conclusions

Mechanical stress enhanced apoptosis and PUMA expression in cardiomyocytes. Treatment with atorvastatin reversed both PUMA expression and apoptosis induced by mechanical stress in cardiomyocytes.  相似文献   
120.
Induced pluripotent stem cells (iPSCs) are obtained from adult cells through overexpression of pluripotency factors. iPSCs share many features with embryonic stem cells (ESCs), circumventing ethical issues, and, noteworthy, match donor's genotype. iPSCs represent therefore a valuable tool for regenerative medicine. Cardiac differentiation of ESCs can be enhanced via microRNAs (miRNAs) and small chemical compounds, which probably act as chromatin remodelers. Cardiomyogenic potential of iPSCs is currently intensely investigated for cell therapy or in vitro drug screening and disease modeling. However, influences of small compounds on iPSC‐related cardiomyogenesis have not yet been investigated in details. Here, we compared the effects of two small molecules, bis‐peroxo‐vanadium (bpV) and sulfonyl‐hydrazone‐1 (SHZ) at varying concentrations, during cardiac differentiation of murine iPSCs. SHZ (5 µM) enhanced specific marker expression and cardiomyocyte yield, without loss of cell viability. In contrast, bpV showed negligible effects on cardiac differentiation rate and appeared to induce Casp3‐dependent apoptosis in differentiating iPSCs. Furthermore, SHZ‐treated iPSCs were able to increase beating foci rate and upregulate early and late cardiomyogenic miRNA expression (miR‐1, miR‐133a, and miR‐208a). Thus, our results demonstrate that small chemical compounds, such as SHZ, can constitute a novel and clinically feasible strategy to improve iPSC‐derived cardiac differentiation. J. Cell. Biochem. 112: 2006–2014, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号