首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8140篇
  免费   701篇
  国内免费   442篇
  2024年   24篇
  2023年   137篇
  2022年   170篇
  2021年   291篇
  2020年   388篇
  2019年   663篇
  2018年   352篇
  2017年   193篇
  2016年   201篇
  2015年   294篇
  2014年   427篇
  2013年   802篇
  2012年   424篇
  2011年   463篇
  2010年   324篇
  2009年   319篇
  2008年   360篇
  2007年   351篇
  2006年   433篇
  2005年   475篇
  2004年   369篇
  2003年   384篇
  2002年   419篇
  2001年   344篇
  2000年   188篇
  1999年   182篇
  1998年   134篇
  1997年   73篇
  1996年   44篇
  1995年   25篇
  1994年   13篇
  1993年   8篇
  1992年   5篇
  1989年   1篇
  1985年   3篇
排序方式: 共有9283条查询结果,搜索用时 15 毫秒
981.
Cdc7激酶抑制剂PHA-767491是最新发现的一类抗肿瘤新药.本实验利用不同浓度的PHA-767491对肿瘤细胞进行抑制研究.实验结果显示,PHA-767491对肿瘤细胞有很强的生长抑制作用,且抑制效果随着药物浓度或时间的增加而增强;通过和化疗药物5-氟尿嘧啶对比发现,PHA-767491只需较低剂量就能发挥出抑制肿瘤的作用,且疗效远高于5-氟尿嘧啶.研究进一步还发现,PHA-767491可通过促使PARP和casepase3蛋白的剪切诱导肿瘤细胞凋亡,同时PHA-767491还可以引起肿瘤细胞自噬.综上研究表明,PHA-767491可以通过诱导细胞凋亡和引起细胞自噬作用对多种肿瘤细胞有较好的治疗效果,而对正常细胞毒性很低.因此该实验研究为今后抗肿瘤新药PHA-767491的进一步应用于癌症的临床治疗提供了重要的实验依据.  相似文献   
982.
核转录因子-κB(NF-κB)是维持急性淋巴细胞白血病(ALL)细胞生存的关键因子.近年来发现,糖原合成酶激酶-3β(GSK-3β)可以正性调控NF-κB的活性.本研究通过抑制GSK-3β活性初步探讨ALL细胞中GSK-3β在NF-κB诱导细胞凋亡中的作用机制.收集ALL患儿骨髓单个核细胞,采用免疫荧光细胞化学方法检测到ALL细胞核内GSK-3β有明显聚集.体外培养ALL细胞后经GSK-3β抑制剂氯化锂(LiCl)和SB216763处理,采用Western印迹和EMSA检测发现,ALL细胞核内GSK-3β表达下降,而NF-κBP65蛋白无明显变化,但是其活性明显降低.同时RT-PCR结果显示,NF-κB下游抗凋亡基因存活素(survivin)的表达随之下降,AnnexinV-PE/7-AAD双染流式细胞仪检测结果证实,ALL细胞凋亡明显增加(P0.01).该结果表明,抑制GSK-3β活性可以下调NF-κB的转录活性,并通过下调抗凋亡基因存活素的表达而促进ALL细胞的凋亡.  相似文献   
983.
常见的动物毒素诱导肿瘤细胞凋亡的分子机制   总被引:1,自引:0,他引:1  
常见的动物毒素如蛇毒、蟾蜍毒、蜂毒、蜘蛛毒等在体内和体外均具有诱导肿瘤细胞调亡的作用,通过对动物毒素的抗肿瘤机制进行综述,为研究开发新型抗肿瘤药提供思路和方法。  相似文献   
984.
Tumor necrosis factor (TNF) receptor-associated factor 2 (TRAF2) and receptor-interacting protein 1 (RIP1) play critical roles in activating c-Jun N-terminal kinase (JNK) and inhibitor of κB kinase (IKK), as well as in inhibiting apoptosis induced by TNFα. The TRAF2 RING domain-mediated polyubiquitination of RIP1 is believed to be essential for TNFα-induced IKK activation, and the RING-domain-deleted TRAF2 (TRAF2-ΔR) has been widely used as a dominant negative in transient overexpression systems to block TNFα-induced JNK and IKK activation. Here, we report that stable expression of TRAF2-ΔR at a physiological level in TRAF2 and TRAF5 double knockout (TRAF2/5 DKO) cells almost completely restores normal TNFα-induced IKK activation, but not RIP1 polyubiquitination. In addition, stable expression of TRAF2-ΔR in TRAF2/5 DKO cells efficiently inhibited the TNFα-induced later phase of prolonged JNK activation, yet failed to inhibit TNFα-induced cell death. Although the basal and inducible expression of anti-apoptotic proteins in TRAF2-ΔR-expressing TRAF2/5 DKO cells was normal, the cells remained sensitive to TNFα-induced cell death because anti-apoptotic proteins were not recruited to the TNFR1 complex efficiently. Moreover, stable expression of TRAF2-ΔR in TRAF2/5 DKO cells failed to suppress constitutive p100 processing in these cells. These data suggest that (i) the TRAF2 RING domain plays a critical role in inhibiting cell death induced by TNFα and is essential for suppressing the noncanonical nuclear factor κB pathway in unstimulated cells; (ii) RIP1 polyubiquitination is not essential for TNFα-induced IKK activation; and (iii) prolonged JNK activation has no obligate role in TNFα-induced cell death.  相似文献   
985.
Lipids, particularly phospholipids, are fundamental to CNS tissue architecture and function. Endogenous polyunsaturated fatty acid chains of phospholipids possess cis-double bonds each separated by one methylene group. These phospholipids are very susceptible to free-radical attack and oxidative modifications. A combination of analytical methods including different versions of chromatography and mass spectrometry allows detailed information to be obtained on the content and distribution of lipids and their oxidation products thus constituting the newly emerging field of oxidative lipidomics. It is becoming evident that specific oxidative modifications of lipids are critical to a number of cellular functions, disease states and responses to oxidative stresses. Oxidative lipidomics is beginning to provide new mechanistic insights into traumatic brain injury which may have significant translational potential for development of therapies in acute CNS insults. In particular, selective oxidation of a mitochondria-specific phospholipid, cardiolipin, has been associated with the initiation and progression of apoptosis in injured neurons thus indicating new drug discovery targets. Furthermore, imaging mass-spectrometry represents an exciting new opportunity for correlating maps of lipid profiles and their oxidation products with structure and neuropathology. This review is focused on these most recent advancements in the field of lipidomics and oxidative lipidomics based on the applications of mass spectrometry and imaging mass spectrometry as they relate to studies of phospholipids in traumatic brain injury.  相似文献   
986.
987.
We have optimized an immunohistochemical double-staining method combining immunohistochemical lymphocyte lineage marker detection and apoptosis detection with terminal deoxyribonucleotidyl transferase–mediated dUTP nick end labeling. The method was used to trace Fas-mediated apoptosis in human reactive lymph nodes according to cell lineage and anatomical location. In addition to Fas, we also studied the expression of Fas ligand (FasL), CD3, CD20, CD19, CD23, and CD68 of apoptotic cells. The presence of simultaneous Fas and FasL positivity indicated involvement of activation-induced death in the induction of paracortical apoptosis. FasL expression in the high endothelial venules might be an inductor of apoptosis of Fas-positive lymphoid cells. In addition to B-lymphocyte apoptosis in the germinal centers, there was often a high apoptosis rate of CD23-expressing follicular dendritic cells. In summary, our double-staining method provides valuable new information about the occurrence and mechanisms of apoptosis of different immune cell types in the lymph node compartments. Among other things, we present support for the importance of Fas/FasL–mediated apoptosis in lymph node homeostasis. (J Histochem Cytochem 58:131–140, 2010)  相似文献   
988.
The heart of leptin-deficient ob/ob mice is characterized by pathologic left ventricular hypertrophy along with elevated triglyceride (TG) content, increased stearoyl-CoA desaturase (SCD) activity, and increased myocyte apoptosis. In the present study, using an ob/ob;SCD1−/− mouse model, we tested the hypothesis that lack of SCD1 could improve steatosis and left ventricle (LV) function in leptin deficiency. We show that disruption of the SCD1 gene improves cardiac function in ob/ob mice by correcting systolic and diastolic dysfunction without affecting levels of plasma TG and FFA. The improvement is associated with reduced expression of genes involved in FA transport and lipid synthesis in the heart, as well as reduction in cardiac FFA, diacylglycerol, TG, and ceramide levels. The rate of FA β-oxidation is also significantly lower in the heart of ob/ob;SCD1−/− mice compared with ob/ob controls. Moreover, SCD1 deficiency reduces cardiac apoptosis in ob/ob mice due to increased expression of antiapoptotic factor Bcl-2 and inhibition of inducible nitric oxide synthase and caspase-3 activities. Reduction in myocardial lipid accumulation and inhibition of apoptosis appear to be one of the main mechanisms responsible for improved LV function in ob/ob mice caused by SCD1 deficiency.  相似文献   
989.
Despite numerous reports demonstrating mitochondrial abnormalities associated with amyotrophic lateral sclerosis (ALS), the role of mitochondrial dysfunction in the disease onset and progression remains unknown. The intrinsic mitochondrial apoptotic program is activated in the central nervous system of mouse models of ALS harboring mutant superoxide dismutase 1 protein. This is associated with the release of cytochrome-c from the mitochondrial intermembrane space and mitochondrial swelling. However, it is unclear if the observed mitochondrial changes are caused by the decreasing cellular viability or if these changes precede and actually trigger apoptosis. This article discusses the current evidence for mitochondrial involvement in familial and sporadic ALS and concludes that mitochondria is likely to be both a trigger and a target in ALS and that their demise is a critical step in the motor neuron death.  相似文献   
990.
Heat shock protein 27 (Hsp27) is a stress-inducible protein in cells that functions as a molecular chaperone and also as an anti-apoptotic protein. Methylglyoxal (MGO) is a reactive dicarbonyl compound produced from cellular glycolytic intermediates that reacts non-enzymatically with proteins to form products such as argpyrimidine. We found considerable amount of Hsp27 in phosphorylated form (pHsp27) in human cataractous lenses. pHsp27 was the major argpyrimidine-modified protein in brunescent cataractous lenses. Modification by MGO enhanced the chaperone function of both pHsp27 and native Hsp27, but the effect on Hsp27 was at least three-times greater than on pHsp27. Phosphorylation of Hsp27 abolished its chaperone function. Transfer of Hsp27 using a cationic lipid inhibited staurosporine (SP)-induced apoptotic cell death by 53% in a human lens epithelial cell line (HLE B-3). MGO-modified Hsp27 had an even greater effect (62% inhibition). SP-induced reactive oxygen species in HLE-B3 cells was significantly lower in cells transferred with MGO-modified Hsp27 when compared to native Hsp27. In vitro incubation experiments showed that MGO-modified Hsp27 reduced the activity of caspase-9, and MGO-modified pHsp27 reduced activities of both caspase-9 and caspase-3. Based on these results, we propose that Hsp27 becomes a better anti-apoptotic protein after modification by MGO, which may be due to multiple mechanisms that include enhancement of chaperone function, reduction in oxidative stress, and inhibition of activity of caspases. Our results suggest that MGO modification and phosphorylation of Hsp27 may have important consequences for lens transparency and cataract development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号