首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12034篇
  免费   903篇
  国内免费   564篇
  2024年   52篇
  2023年   272篇
  2022年   455篇
  2021年   512篇
  2020年   468篇
  2019年   469篇
  2018年   502篇
  2017年   364篇
  2016年   379篇
  2015年   487篇
  2014年   555篇
  2013年   705篇
  2012年   397篇
  2011年   495篇
  2010年   338篇
  2009年   435篇
  2008年   470篇
  2007年   509篇
  2006年   439篇
  2005年   369篇
  2004年   352篇
  2003年   335篇
  2002年   292篇
  2001年   185篇
  2000年   174篇
  1999年   212篇
  1998年   209篇
  1997年   195篇
  1996年   198篇
  1995年   187篇
  1994年   191篇
  1993年   189篇
  1992年   190篇
  1991年   163篇
  1990年   151篇
  1989年   148篇
  1988年   118篇
  1987年   130篇
  1986年   122篇
  1985年   160篇
  1984年   172篇
  1983年   113篇
  1982年   121篇
  1981年   126篇
  1980年   93篇
  1979年   90篇
  1978年   51篇
  1977年   48篇
  1976年   40篇
  1975年   22篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
Taurine entered the alga Chlorella fusca Shihira et Krauss strain 21l-8b via a pH and energy-dependent system ("permease"). Transport followed triphasic kinetics from 10−6 to 10−2 M with Km values for taurine of 5.4 × 10−5, 4.1 × l0−4 and l.5 × 10−3 M. This uptake system was specific for sulfonic acids and showed no affinity for α- and β -amino acids or Na+; thus the permease of C. fusca is different from all known taurine transport systems with respect to structural specificity and lack of Na+ -dependence. Uptake was not observed in sulfate-grown algae but developed as a response to sulfate limitation within 2 h. Sulfate addition caused a rapid decline in taurine transport capacity. Labeled taurine was rapidly metabolized in C. fusca to sulfate and ethanolamine, suggesting oxidative hydrolysis as the mechanism of C-S bond cleavage. Further incorporation of these catabolic products in C - and S -metabolism was demonstrated. Taurine catabolism was also detected in other green algae and some cyanobacteria.  相似文献   
42.
A sand-culture experiment was conducted to study the influence of a deficiency of and an excess of micronutrients on the uptake and assimilation of NH 4 + and NO 3 ions by maize. By studying the fate of15N supplied as15NH4NO3 or NH4 15NO3, it was demonstrated that in maize plants NH4−N was absorbed in preference to NO 3 −N. The uptake and distribution of N originating from both NH 4 + and NO 3 was considerably modified by deficiency of, or an excess of, micronutrients in the growth medium. The translocation of NH 4 + −N from roots to shoots was relatively less than that of NO 3 −N. Deficiency as well as excessive amounts of micronutrients, in the growth medium, substantially reduced the translocation of absorbed N into protein. This effect was more pronounced in the case of N supplied as NO 3 . Amino-N was the predominant non-protein fraction in which N from both NH 4 + and NO 3 tended to accumulate. The next important non-protein fractions were NO 3 −N when N was supplied as NO 3 and amide-N when NH 4 + was the source. The relative accumulation of15N into different protein fractions was also a function of imposed micronutrient levels.  相似文献   
43.
Local cerebral glucose utilization (LCGU) was measured, using the quantitative autoradiographic [14C]2-deoxy-D-glucose method, in 56 brain regions of 3-month-old, awake Fischer-344 rats, after intraperitoneal administration of sulpiride (SULP) 100 mg/kg. SULP, an "atypical" neuroleptic, is a selective antagonist of D2 dopamine receptors. LCGU was reduced in a few nondopaminergic regions at 1 h after drug administration. Thereafter, SULP progressively elevated LCGU in many other regions. At 3 h, LCGU was elevated in 23% of the regions examined, most of which are related to the CNS dopaminergic system (caudate-putamen, nucleus accumbens, olfactory tubercle, lateral habenula, median eminence, paraventricular hypothalamic nucleus). Increases of LCGU were observed also in the suprachiasmatic nucleus, lateral geniculate, and inferior olive. These effects of SULP on LCGU differ from the effects of the "typical" neuroleptic haloperidol, which produces widespread decreases in LCGU in the rat brain. Selective actions on different subpopulations of dopamine receptors may explain the different effects of the two neuroleptics on brain metabolism, which correspond to their different clinical and behavioral actions.  相似文献   
44.
The circadian rhythms in activity, core temperature (Tc), O2 consumption, CO2 production, and respiratory quotient (RQ) were monitored in four captive Chinese pangolins (Manis pentadactyla). The pangolins were strictly nocturnal, never emerging from their nest before 1600 h, and their intermittent activity continued no later than 0230. As is usual in nocturnal mammals, the highest values observed in Tc, O2 consumption, and CO2 production occurred during the night; the lowest values occurred during the day. The magnitude of the variation in Tc, O2 consumption, CO2 production, and RQ averaged 1.2°C, 1.3 ml O2 kg?1 min?1, 1.2 ml CO2 kg?1 min?1, and 0.24, respectively. The circadian pattern in RQ was independent of activity, Tc, and the metabolic parameters and was of a different character than the patterns exhibited in the other variables. RQ remained constant at either a high or low level for long periods (8–10 h) and then increased or decreased relatively rapidly (1–2h) to the other level as in a square wave, whereas the rhythms in the other variables are similar to sine waves. The sharp increase in RQ was followed by a slow decline in Tc, and the sharp decline in RQ was followed by a slow increase in Tc.  相似文献   
45.
The metabolism of succinate was examined in the housefly Musca domestica L. The labeled carbons from [2,3-14C]succinate were readily incorporated into cuticular hydrocarbon and internal lipid, whereas radioactivity from [1,4-14C]succinate was not incorporated into either fraction. Examination of the incorporation of [2,3-14C]succinate, [1-14C]acetate, and [U-14C]proline into hydrocarbon by radio-gas-liquid chromatography showed that each substrate gave a similar labeling pattern, which suggested that succinate and proline were converted to acetyl-CoA prior to incorporation into hydrocarbons. Carbon-13 nuclear magnetic resonance showed that the labeled carbons from [2,3-13C]succinate enriched carbons 1, 2, and 3 of hydrocarbons with carbon-carbon coupling showing that carbons 2 and 3 of succinate were incorporated as an intact unit. Radio-high-performance liquid chromatographic analysis of [2,3-14C]succinate metabolism by mitochondrial preparations showed that in addition to labeling fumarate, malate, and citrate, considerable radioactivity was also present in the acetate fraction. The data show that succinate was not converted to methylmalonate and did not label hydrocarbon via a methylmalonyl derivative. Malic enzyme was assayed in sonicated mitochondria prepared from the abdomens and thoraces of 1- and 4-day-old insects; higher activity was obtained with NAD+ in mitochondria prepared from thoraces, whereas NADP+ gave higher activity with abdomen preparations. These data document the metabolism of succinate to acetyl-CoA and not to a methylmalonyl unit prior to incorporation into lipid in the housefly and establish the role of the malic enzyme in this process.  相似文献   
46.
Summary The uptake of deoxyguanosine by rat liver mitochondria was characterized. The process required an intact mitochondrial membrane and exhibited a dependence on added phosphate. Deoxyguanosine uptake was minimally influenced by Mg2+ or Mn2+, but Ca2+ at concentrations above 0.5 mM were detrimental. Of the deoxynucleosides tested, only deoxyinosine inhibited the uptake of deoxyguanosine. The ribonucleoside guanosine was not observed to compete with its deoxynucleoside analog. Known inhibitors of nucleoside transport, cytochalasin B and NBMPR, did not block deoxyguanosine uptake, but the sulfhydryl reagents NEM and pCMB were both inhibitory. The uptake of deoxyguanosine was shown to be a saturable process and an apparent Km of 0.64 M was calculated from a Hanes plot.  相似文献   
47.
Summary Because the increase in sodium excretion during left atrial distension in conscious dogs is abolished after chronic cardiac denervation, we have investigated whether this is a result of the disappearance of specific atrial granules. Electron microscopy and light-microscopical and ultrastructural immunohistochemistry of canine atria show that atrial granules displaying immunoreactivity for cardiac hormones of the cardiodilatin/atrial natriuretic polypeptide (CDD/ANP) family are still present in denervated left and right atria, although reduced in quantity. It is concluded that the atrial-induced natriuresis is not only related to the existence of specific atrial granules. The functional link between atrial-induced natriuresis provoked by atrial distension and the release of atrial polypeptide hormones remains uncertain because the denervated heart can secrete CDD although the diuretic-natriuretic effect is altered.  相似文献   
48.
Glucose and amino acid metabolism in 1- and 30-day-old chick telencephalon slices was studied in two incubation media in the presence or in the absence of a continuous oxygenation. Medium 1 has a composition and a tonicity similar to cerebrospinal fluid, medium 2 is hypertonic and does not contain any K+ ions. The incorporation of glucose carbon into amino acids and the distribution of radioactivity between the different amino acids are close to the ones observed in the chick brain in vivo only when the slices are incubated in medium 1, with oxygen at 30 days and without oxygen for the 1-day-old chick. It also appears that if oxygenation is necessary for incubation of mature brain tissue in vitro, the absence of the medium oxygenation is more suitable for the study of glucose metabolism in 1-day-old chick brain slices.  相似文献   
49.
Differences in water binding were measured in the leaf cells ofMesembryanthemum crystallinum L. plants grown under high-salinity conditions by using nuclear-magnetic-resonance (NMR) imaging. The 7-Tesla proton NMR imaging system yielded a spatial resolution of 20·20·100 m3. Images recorded with different spin-echo times (4.4 ms to 18 ms) showed that the water concentrations in the bladder cells (located on the upper and lower leaf surface), in the mesophyll cells and in the water-conducting vessels were nearly identical. All of the water in the bladder cells and in the water-conducting vessels was found to be mobile, whilst part of the water in the mesophyll cells was bound. Patches of mesophyll cells could be identified which bound water more strongly than the surrounding mesophyll cells. Optical investigations of leaf cross-sections revealed two types of mesophyll cells of different sizes and chloroplast contents. It is therefore likely that in the small-sized mesophyll cells water is strongly bound. A long-term asymmetric water exchange between the mesophyll cells and the bladder cells during Crassulacean acid metabolism has been described in the literature. The high density of these mesophyll cells in the lower epidermis is a possible cause of this asymmetry.Abbreviations CAM Crassulacean acid metabolism - NMR nuclear magnetic resonance - TE spin-echo time  相似文献   
50.
Abstract Water storage and nocturnal increases in osmotic pressure affect the water relations of the desert succulent Ferocactus acanthodes, which was studied using an electrical circuit analog based on the anatomy and morphology of a representative individual. Transpiration rates and osmotic pressures over a 24-h period were used as input variables. The model predicted water potential, turgor pressure and water flow for various tissues. Plant capacitances, storage resistances and nocturnal increases in osmotic pressure were varied to determine their role in the water relations of this dicotyledonous succulent. Water coming from storage tissues contributed about one-third of the water transpired at night: the majority of this water came from the nonphotosynthetic, water storage parenchyma of the stem. Time lags of 4 h were predicted between maximum transpiration and maximum water uptake from the soil. Varying the capacitance of the plant caused proportional changes in osmotically driven water movement but changes in storage resistance had only minor effects. Turgor pressure in the chlorenchyma depended on osmotic pressure, but was fairly insensitive to doubling or halving of the capacitance or storage resistance of the plant. Water uptake from the soil was only slightly affected by osmotic pressure changes in the chlorenchyma. For this stem succulent, the movement of water from the chlorenchyma to the xylem and the internal redistribution of water among stem tissues were dominated by nocturnal changes in chlorenchyma osmotic pressure, not by transpiration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号