首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11982篇
  免费   895篇
  国内免费   566篇
  2024年   42篇
  2023年   252篇
  2022年   431篇
  2021年   512篇
  2020年   467篇
  2019年   469篇
  2018年   502篇
  2017年   361篇
  2016年   379篇
  2015年   487篇
  2014年   555篇
  2013年   705篇
  2012年   397篇
  2011年   495篇
  2010年   338篇
  2009年   435篇
  2008年   470篇
  2007年   509篇
  2006年   439篇
  2005年   369篇
  2004年   352篇
  2003年   335篇
  2002年   292篇
  2001年   185篇
  2000年   174篇
  1999年   212篇
  1998年   209篇
  1997年   195篇
  1996年   198篇
  1995年   187篇
  1994年   191篇
  1993年   189篇
  1992年   190篇
  1991年   163篇
  1990年   151篇
  1989年   148篇
  1988年   118篇
  1987年   130篇
  1986年   122篇
  1985年   160篇
  1984年   172篇
  1983年   113篇
  1982年   121篇
  1981年   126篇
  1980年   93篇
  1979年   90篇
  1978年   51篇
  1977年   48篇
  1976年   40篇
  1975年   22篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
11.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
12.
Abstract The growth, biomass δ13C values, and ability to accumulate titratable acidity at night were compared in eight environmental treatments for Cremnophila linguifolia, Sedum greggii, and their F1 hybrid. In the phytotron, differences in treatment daylength, day/night temperature and water availability were all found to have effects on total plant dry weight, nocturnal accumulation of titratable acidity and biomass δ13C value of at least some of the genotypes. However, there were differences between the genotypes both in the magnitude and direction of response of the phenotypic properties to the treatment variables. The phytotron δ13C values ranged from -12.9 to -19.2‰ for C. linguifolia, from -22.2 to -33.4‰ for S. greggii, and from -19.2 to -24.9‰ for the hybrid. After with-holding water for 76 h both C. linguifolia and the hybrid had midday Ψleaf values of -0.23 MPa; however, S. greggii had a value of -1.05 MPa. In contrast to past observations of other species, the daily watered plants of C. linguifolia had less negative δ13C values than did the plants watered only weekly.  相似文献   
13.
14.
15.
Chemical tools capable of detecting ferrous iron with oxidation-state specificity have only recently become available. Coincident with this development in chemical biology has been increased study and appreciation for the importance of ferrous iron during infection and more generally in host–pathogen interaction. Some of the recent findings are surprising and challenge long-standing assumptions about bacterial iron homeostasis and the innate immune response to infection. Here, we review these recent developments and their implications for antibacterial therapy.  相似文献   
16.
Recent advances in the fields of chromatography, mass spectrometry, and chemical analysis have greatly improved the efficiency with which carotenoids can be extracted and analyzed from avian plumage. Prior to these technological developments, Brush (1968) [1] concluded that the burgundy-colored plumage of the male pompadour Cotinga Xipholena punicea is produced by a combination of blue structural color and red carotenoids, including astaxanthin, canthaxanthin, isozeaxanthin, and a fourth unidentified, polar carotenoid. However, X. punicea does not in fact exhibit any structural coloration. This work aims to elucidate the carotenoid pigments of the burgundy color of X. punicea plumage using advanced analytical methodology. Feathers were collected from two burgundy male specimens and from a third aberrant orange-colored specimen. Pigments were extracted using a previously published technique (McGraw et al. (2005) [2]), separated by high-performance liquid chromatography (HPLC), and analyzed by UV/Vis absorption spectroscopy, chemical analysis, mass spectrometry, nuclear magnetic resonance (NMR), and comparison with direct synthetic products. Our investigation revealed the presence of eight ketocarotenoids, including astaxanthin and canthaxanthin as reported previously by Brush (1968) [1]. Six of the ketocarotenoids contained methoxyl groups, which is rare for naturally-occurring carotenoids and a novel finding in birds. Interestingly, the carotenoid composition was the same in both the burgundy and orange feathers, indicating that feather coloration in X. punicea is determined not only by the presence of carotenoids, but also by interactions between the bound carotenoid pigments and their protein environment in the barb rami and barbules. This paper presents the first evidence of metabolically-derived methoxy-carotenoids in birds.  相似文献   
17.
Connective tissue growth factor (CTGF/CCN2) is overexpressed in diabetes. Diabetic rats possess myocardial and cardiomyocyte hypertrophy. In a recent report, Wang and colleagues (Am J Physiol Cell Physiol. 2009 Jul 22. [Epub ahead of print]) show that CCN2 directly mediates cardiomyocyte hypertrophy as well as that induced by high glucose and fatty acid. CCN2 acted via the TrkA receptor. These data are the subject of this commentary, and emphasize that CCN2 may be an excellent target for therapy in diabetes.  相似文献   
18.
Inhibition by ouabain of rheogenic Na+ transport across the basolateral membranes of frog skin is found to be manifest within 3–4 min. This rate of pump inhibition is not different from the rate of diffusion through extracellular tissue layers between the serosal bath and the actual site of action, i.e., the epithelial cell layers. It is concluded that the well-known slow time course of decrease in transepithelial current flow is due ionic redistribution and conductance changes of the epithelial membranes secondary to pump inhibition.  相似文献   
19.
20.
Nitric oxide synthase (NOS) may be uncoupled to produce superoxide rather than nitric oxide (NO) under pathological conditions such as diabetes mellitus and insulin resistance, leading to cardiac contractile anomalies. Nonetheless, the role of NOS uncoupling in insulin resistance-induced cardiac dysfunction remains elusive. Given that folic acid may produce beneficial effects for cardiac insufficiency partially through its NOS recoupling capacity, this study was designed to evaluate the effect of folic acid on insulin resistance-induced cardiac contractile dysfunction in a sucrose-induced insulin resistance model. Mice were fed a sucrose or starch diet for 8 weeks before administration of folic acid in drinking water for an additional 4 weeks. Cardiomyocyte contractile and Ca2+ transient properties were evaluated and myocardial function was assessed using echocardiography. Our results revealed whole body insulin resistance after sucrose feeding associated with diminished NO production, elevated peroxynitrite (ONOO) levels, and impaired echocardiographic and cardiomyocyte function along with a leaky ryanodine receptor (RYR) and intracellular Ca2+ handling derangement. Western blot analysis showed that insulin resistance significantly promoted Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation, which might be responsible for the leaky RYR and cardiac mechanical dysfunction. NOS recoupling using folic acid reversed insulin resistance-induced changes in NO and ONOO, CaMKII phosphorylation, and cardiac mechanical abnormalities. Taken together, these data demonstrated that treatment with folic acid may reverse cardiac contractile and intracellular Ca2+ anomalies through ablation of CaMKII phosphorylation and RYR Ca2+ leak.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号