首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1694篇
  免费   190篇
  国内免费   8篇
  1892篇
  2024年   5篇
  2023年   26篇
  2022年   47篇
  2021年   69篇
  2020年   67篇
  2019年   52篇
  2018年   61篇
  2017年   44篇
  2016年   64篇
  2015年   69篇
  2014年   134篇
  2013年   117篇
  2012年   90篇
  2011年   156篇
  2010年   78篇
  2009年   75篇
  2008年   105篇
  2007年   91篇
  2006年   74篇
  2005年   49篇
  2004年   86篇
  2003年   40篇
  2002年   39篇
  2001年   13篇
  2000年   10篇
  1999年   24篇
  1998年   14篇
  1997年   13篇
  1996年   12篇
  1995年   14篇
  1994年   12篇
  1993年   11篇
  1992年   14篇
  1991年   10篇
  1990年   7篇
  1989年   6篇
  1988年   8篇
  1987年   3篇
  1986年   8篇
  1985年   3篇
  1984年   8篇
  1983年   6篇
  1982年   8篇
  1981年   14篇
  1980年   12篇
  1979年   7篇
  1978年   2篇
  1977年   6篇
  1972年   4篇
  1970年   1篇
排序方式: 共有1892条查询结果,搜索用时 0 毫秒
991.
The basic helix-loop-helix DNA binding protein Hand2 has critical functions in cardiac development both in neural crest-derived and mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest has allowed us to genetically dissect Hand2-dependent defects specifically in outflow tract and cardiac cushion independent of Hand2 functions in mesoderm-derived structures. Targeted deletion of Hand2 in the neural crest results in misalignment of the aortic arch arteries and outflow tract, contributing to development of double outlet right ventricle (DORV) and ventricular septal defects (VSD). These neural crest-derived developmental anomalies are associated with altered expression of Hand2-target genes we have identified by gene profiling. A number of Hand2 direct target genes have been identified using ChIP and ChIP-on-chip analyses. We have identified and validated a number of genes related to cell migration, proliferation/cell cycle and intracellular signaling whose expression is affected by Hand2 deletion in the neural crest and which are associated with development of VSD and DORV. Our data suggest that Hand2 is a multifunctional DNA binding protein affecting expression of target genes associated with a number of functional interactions in neural crest-derived cells required for proper patterning of the outflow tract, generation of the appropriate number of neural crest-derived cells for elongation of the conotruncus and cardiac cushion organization. Our genetic model has made it possible to investigate the molecular genetics of neural crest contributions to outflow tract morphogenesis and cell differentiation.  相似文献   
992.
The analysis of structural variants associated with specific phenotypic features is promising for the elucidation of the function of involved genes. There is, however, at present no approach allowing the rapid mapping of chromosomal translocation breakpoints to the basepair level from a single chromosome. Here we demonstrate that we have advanced both the microdissection and the subsequent unbiased amplification to an extent that breakpoint mapping to the basepair level has become possible. As a case in point we analysed the two breakpoints of a t(7;13) translocation observed in a patient with split hand/foot malformation (SHFM1). The amplification products of the der(7) and of the der(13) were hybridized to custom‐made arrays, enabling us to define primers at flanking breakpoint regions and thus to fine‐map the breakpoints to the basepair level. Consequently, our results will also contribute to a further delineation of causative mechanisms underlying SHFM1 which are currently unknown.  相似文献   
993.
994.
Resistin has been suggested to be involved in the development of diabetes and insulin resistance. We recently reported that resistin is expressed in diabetic hearts and promotes cardiac hypertrophy; however, the mechanisms underlying this process are currently unknown. Therefore, we wanted to elucidate the mechanisms associated with resistin-induced cardiac hypertrophy and myocardial insulin resistance. Overexpression of resistin using adenoviral vector in neonatal rat ventricular myocytes was associated with inhibition of AMP-activated protein kinase (AMPK) activity, activation of tuberous sclerosis complex 2/mammalian target of rapamycin (mTOR) pathway, and increased cell size, [(3)H]leucine incorporation (i.e. protein synthesis) and mRNA expression of the hypertrophic marker genes, atrial natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain. Activation of AMPK with 5-aminoimidazole-4-carbozamide-1-β-D-ribifuranoside or inhibition of mTOR with rapamycin or mTOR siRNA attenuated these resistin-induced changes. Furthermore, resistin increased serine phosphorylation of insulin receptor substrate (IRS1) through the activation of the apoptosis signal-regulating kinase 1/c-Jun N-terminal Kinase (JNK) pathway, a module known to stimulate insulin resistance. Inhibition of JNK (with JNK inhibitor SP600125 or using dominant-negative JNK) reduced serine 307 phosphorylation of IRS1. Resistin also stimulated the activation of p70(S6K), a downstream kinase target of mTOR, and increased phosphorylation of the IRS1 serine 636/639 residues, whereas treatment with rapamycin reduced the phosphorylation of these residues. Interestingly, these in vitro signaling pathways were also operative in vivo in ventricular tissues from adult rat hearts overexpressing resistin. These data demonstrate that resistin induces cardiac hypertrophy and myocardial insulin resistance, possibly via the AMPK/mTOR/p70(S6K) and apoptosis signal-regulating kinase 1/JNK/IRS1 pathways.  相似文献   
995.
The inward rectifier K+ channel Kir2.1 participates in the maintenance of the cell membrane potential in a variety of cells including neurons and cardiac myocytes. Mutations of KCNJ2 encoding Kir2.1 underlie the Andersen–Tawil syndrome, a rare disorder clinically characterized by periodic paralysis, cardiac arrhythmia and skeletal abnormalities. The maintenance of the cardiac cell membrane potential is decreased in ischaemia, which is known to stimulate the AMP-activated serine/threonine protein kinase (AMPK). This energy-sensing kinase stimulates energy production and limits energy utilization. The present study explored whether AMPK regulates Kir2.1. To this end, cRNA encoding Kir2.1 was injected into Xenopus oocytes with and without additional injection of wild type AMPK (AMPKα1 + AMPKβ1 + AMPKγ1), of the constitutively active γR70QAMPK (α1β1γ1(R70Q)), of the kinase dead mutant αK45RAMPK (α1(K45R)β1γ1), or of the ubiquitin ligase Nedd4-2. Kir2.1 activity was determined in two-electrode voltage-clamp experiments. Moreover, Kir2.1 protein abundance in the cell membrane was determined by immunostaining and subsequent confocal imaging. As a result, wild type and constitutively active AMPK significantly reduced Kir2.1-mediated currents and Kir2.1 protein abundance in the cell membrane. Expression of wild type Nedd4-2 or of Nedd4-2S795A lacking an AMPK phosphorylation consensus sequence downregulated Kir2.1 currents. The effect of wild type Nedd4-2 but not of Nedd4-2S795A was significantly augmented by additional coexpression of AMPK. In conclusion, AMPK is a potent regulator of Kir2.1. AMPK is at least partially effective through phosphorylation of the ubiquitin ligase Nedd4-2.  相似文献   
996.
There is a growing body of work in the literature that demonstrates the significant differences between 2D versus 3D environments in cell morphologies, spatial organization, cell-ECM interactions, and cell signaling. The 3D environments are generally considered more realistic tissue models both because they offer cells a surrounding environment rather than just a planar surface with which to interact, and because they provide the potential for more diverse mechanical environments. Many studies have examined cellular-mediated contraction of 3D matrices; however, because the 3D environment is much more complex and the scale more difficult to study, little is known regarding how mechanical environment, cell and collagen architecture, and collagen remodeling are linked. In the current work, we examine the spatial arrangement of neonatal cardiac fibroblasts and the associated collagen organization in constrained and unconstrained collagen gels over a 24 h period. Collagen gels that are constrained by their physical attachment to a mold and similar gels, which have been detached (unconstrained) from the mold and subsequently contract, offer two simple mechanical models by which the mechanisms of tissue homeostasis and wound repair might be examined. Our observations suggest the presence of two mechanical regimes in the unconstrained gels: an outer ring where cells orient circumferentially and local collagen aligns with the elongated cells; and a central region where unaligned stellate/bipolar cells are radially surrounded by collagen, similar to that seen throughout constrained gels. The evolving organization of cell alignment and surrounding collagen organization suggests that cellular response may be due to the cellular perception of the apparent stiffness of local physical environment.  相似文献   
997.
998.
The clustering of cardiac RyR mutations, linked to sudden cardiac death (SCD), into several regions in the amino acid sequence underlies the hypothesis that these mutations interfere with stabilising interactions between different domains of the RyR2. SCD mutations cause increased channel sensitivity to cytoplasmic and luminal Ca2+. A synthetic peptide corresponding to part of the central domain (DPc10:2460G–P2495) was designed to destabilise the interaction of the N-terminal and central domains of wild-type RyR2 and mimic the effects of SCD mutations. With Ca2+ as the sole regulating ion, DPc10 caused increased channel activity which could be reversed by removal of the peptide whereas in the presence of ATP DPc10 caused no activation. In support of the domain destablising hypothesis, the corresponding peptide (DPc10-mut) containing the CPVT mutation R2474S did not affect channel activity under any circumstances. DPc10-induced activation was due to a small increase in RyR2 sensitivity to cytoplasmic Ca2+ and a large increase in the magnitude of luminal Ca2+ activation. The increase in the luminal Ca2+ response appeared reliant on the luminal-to-cytoplasmic Ca2+ flux in the channel, indicating that luminal Ca2+ was activating the RyR2 via its cytoplasmic Ca2+ sites. DPc10 had no significant effect on the RyR2 gating associated with luminal Ca2+ sensing sites. The results were fitted by the luminal-triggered Ca2+ feed-through model and the effects of DPc10 were explained entirely by perturbations in cytoplasmic Ca2+-activation mechanism.  相似文献   
999.
Cerebral cavernous malformations (CCMs; OMIM 116860) are vascular anomalies mostly located in the central nervous system (CNS) and occasionally within the skin and retina.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号