首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   5篇
  国内免费   4篇
  183篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   4篇
  2018年   2篇
  2017年   3篇
  2016年   1篇
  2015年   3篇
  2014年   3篇
  2013年   7篇
  2012年   3篇
  2011年   11篇
  2010年   10篇
  2009年   15篇
  2008年   6篇
  2007年   11篇
  2006年   13篇
  2005年   14篇
  2004年   10篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  2000年   3篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1994年   6篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1986年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有183条查询结果,搜索用时 15 毫秒
11.
Candida albicans secretes both hydroxamate and phenolate-type siderophores when grown under iron-restricted conditions. The inhibition of candidal growth by iron limitation was reversed by the addition of supplemental hydroxamate on phenolate siderophores. Both siderophores produced equal stimulation of growth suggesting that C. albicans could utilize both siderophores with equal efficiency. Addition of heterologous siderophores from both bacteria and fungi also supported growth of the yeast in a deferrated medium. These results suggest that C. albicans has an iron-uptake mechanism which enables it to obtain iron by utilizing candidal and non-candidal siderophores.  相似文献   
12.
How unicellular organisms optimize the production of compounds is a fundamental biological question. While it is typically thought that production is optimized at the individual‐cell level, secreted compounds could also allow for optimization at the group level, leading to a division of labor where a subset of cells produces and shares the compound with everyone. Using mathematical modeling, we show that the evolution of such division of labor depends on the cost function of compound production. Specifically, for any trait with saturating benefits, linear costs promote the evolution of uniform production levels across cells. Conversely, production costs that diminish with higher output levels favor the evolution of specialization–especially when compound shareability is high. When experimentally testing these predictions with pyoverdine, a secreted iron‐scavenging compound produced by Pseudomonas aeruginosa, we found linear costs and, consistent with our model, detected uniform pyoverdine production levels across cells. We conclude that for shared compounds with saturating benefits, the evolution of division of labor is facilitated by a diminishing cost function. More generally, we note that shifts in the level of selection from individuals to groups do not solely require cooperation, but critically depend on mechanistic factors, including the distribution of compound synthesis costs.  相似文献   
13.
Microbial invasions can compromise ecosystem services and spur dysbiosis and disease in hosts. Nevertheless, the mechanisms determining invasion outcomes often remain unclear. Here, we examine the role of iron-scavenging siderophores in driving invasions of Pseudomonas aeruginosa into resident communities of environmental pseudomonads. Siderophores can be ‘public goods’ by delivering iron to individuals possessing matching receptors; but they can also be ‘public bads’ by withholding iron from competitors lacking these receptors. Accordingly, siderophores should either promote or impede invasion, depending on their effects on invader and resident growth. Using supernatant feeding and invasion assays, we show that invasion success indeed increased when the invader could use its siderophores to inhibit (public bad) rather than stimulate (public good) resident growth. Conversely, invasion success decreased the more the invader was inhibited by the residents’ siderophores. Our findings identify siderophores as a major driver of invasion dynamics in bacterial communities under iron-limited conditions.  相似文献   
14.
A copper(II) coordination polymer {[Cu2(cpa)2]}n (1) (cpaH2 = 4-carboxyphenoxyacetic acid) has been synthesized by hydrothermal technique. The X-ray structure of the compound shows that it is a 2D coordination polymer where Cu(II) ions are pentacoordinated in a square pyramidal fashion. The magnetic measurement of 1 in different magnetic fields suggest a weak ferromagnetic ordering taking place below 20 K, arising from spin canting phenomenon due to the non-coplanar basal planes of copper ions.  相似文献   
15.
Aims: As a toxic metal, cadmium (Cd) affects microbial and plant metabolic processes, thereby potentially reducing the efficiency of microbe or plant‐mediated remediation of Cd‐polluted soil. The role of siderophores produced by Streptomyces tendae F4 in the uptake of Cd by bacteria and plant was investigated to gain insight into the influence of siderophores on Cd availability to micro‐organisms and plants. Methods and Results: The bacterium was cultured under siderophore‐inducing conditions in the presence of Cd. The kinetics of siderophore production and identification of the siderophores and their metal‐bound forms were performed using electrospray ionization mass spectrometry. Inductively coupled plasma spectroscopy was used to measure iron (Fe) and Cd contents in the bacterium and in sunflower plant grown in Cd‐amended soil. Siderophores significantly reduced the Cd uptake by the bacterium, while supplying it with iron. Bacterial culture filtrates containing three hydroxamate siderophores secreted by S. tendae F4 significantly promoted plant growth and enhanced uptake of Cd and Fe by the plant, relative to the control. Furthermore, application of siderophores caused slightly more Cd, but similar Fe uptake, compared with EDTA. Bioinoculation with Streptomyces caused a dramatic increase in plant Fe content, but resulted only in slight increase in plant Cd content. Conclusion: It is concluded that siderophores can help reduce toxic metal uptake in bacteria, while simultaneously facilitating the uptake of such metals by plants. Also, EDTA is not superior to hydroxamate siderophores in terms of metal solubilization for plant uptake. Significance and Impact of the Study: The study showed that microbial processes could indirectly influence the availability and amount of toxic metals taken up from the rhizosphere of plants. Furthermore, although EDTA is used for chelator‐enhanced phytoremediation, microbial siderophores would be ideal for this purpose.  相似文献   
16.
The fungus Cunninghamella blakesleeana NCIM 687, industrially recognized for progesterone biotransformation, was found to produce two siderophores at low stress of iron (upto 40 M iron in the growth medium). HPLC analysis and direct comparison with authentic samples characterized one of them as ferrichrysin (hydroxamate type) and other probably as a member of the coprogen family of siderophores.  相似文献   
17.
The reaction of [TiCp*Cl3] with [Fe(η5-C5H5)(η5-C5H4COOH)] in the presence of NEt3 yields [TiCp*{(OOC-C5H4)FeCp}3] (1), (Cp = η5-C5H5). The alkyl complex [TiCp*Me3] reacts with [FeCp(η5-C5H4-CH2COOH)] or anthranilic acid rendering the tris-carboxylate titanium complexes [TiCp*{(OOCCH2-C5H4)FeCp}3] (2) and [TiCp*{(OOCC6H4NH2)3] (3), respectively. Complex 3 can be protonated with triflic acid to render [TiCp*{(OOCC6H4NH2)3].HOTf (4). The reaction of [TiCp*Me3] with anthranilic acid in a 1:2 M ratio yields the alkyl carboxylate derivative [TiCp*Me{(OOCC6H4NH2)2] (5). Complex 5 reacts with tBuNC to render the iminoacyl complex [TiCp*(η2-MeCNtBu){(OOCC6H4NH2)2] (6). The reaction of [TiCp*Cl3] with the ferroceneacetic acid, gives [TiCp*Cl2{(OOCCH2-C5H4)FeCp}] (7). The [TiCp*Cl]2(μ-O)[(ΟΟC-C5H4)2Fe] (8) can be obtained by reaction of [TiCp*Cl3] with [Fe(η5-C5H4-COOH)2] in the presence of a base. The molecular structures of 1 and 8 have been established by X-ray diffraction methods.  相似文献   
18.
Two new complexes, [Cu(mamba)2] and [Mn(mamba)2] (mamba, N-(2-methylpyridine)-2-aminomethyl benzoate) were synthesized and characterized by X-ray crystallography. Whereas the [Cu(mamba)2] complex crystallizes in a monoclinic P21/c space group, the [Mn(mamba)2] complex crystallizes in a triclinic space group. The nature of the metal ion greatly influences the lattices and the molecular structures of the compounds. In the crystal lattice of the copper complex are four cocrystallized methanol solvent, which are all involved in building six strong H-bonds with the complex. However, the lattice for the manganese complex contain only one cocrystallized methanol, along with one NaClO4, that is also involved in making one H-bond with the [Mn(mamba)2] unit. Nevertheless, the sodium ion is coordinated to the ClO4, the methanol and two [Mn(mamba)2] to form a stable extended chain metal complex. Electrochemical studies indicated that both complexes undergo quasi reversible one electron reduction in acetonitrile.  相似文献   
19.
We report here on a new class of siderophores isolated from Rhodococcus erythropolis IGTS8, the first structurally characterized from any species of Rhodococcus and for which we suggest the name heterobactins. These siderophores consist of a tripeptide of sequence (N-OH)-L-Orn-Gly-D-Orn-(delta-N-dihydroyxbenzoate). The alpha amino group of the D-Orn is derivatized either as a 2-hydroxybenzoxazolate in heterobactin A or remains free in heterobactin B. The structures were determined by a combination of amino acid analysis, mass spectrometry and NMR methods. The two new compounds are true siderophores in that they relieve iron limited growth in the producing strain. The heterobactins are also transported by other non-producing bacteria. Growth promotion tests using various transport mutants revealed that in E. coli heterobactin A is only recognized by the catecholate receptor Cir while heterobactin B is taken up in both E.coli and A. flavescens JG9 via a hydroxamate transport system.  相似文献   
20.
Microbes have the potential to be highly cooperative organisms. The archetype of microbial cooperation is often considered to be the secretion of siderophores, molecules scavenging iron, where cooperation is threatened by “cheater” genotypes that use siderophores without making them. Here, we show that this view neglects a key piece of biology: siderophores are imported by specific receptors that constrain their use by competing strains. We study the effect of this specificity in an ecoevolutionary model, in which we vary siderophore sharing among strains, and compare fully shared siderophores with private siderophores. We show that privatizing siderophores fundamentally alters their evolution. Rather than a canonical cooperative good, siderophores become a competitive trait used to pillage iron from other strains. We also study the physiological regulation of siderophores using in silico long‐term evolution. Although shared siderophores evolve to be downregulated in the presence of a competitor, as expected for a cooperative trait, privatized siderophores evolve to be upregulated. We evaluate these predictions using published experimental work, which suggests that some siderophores are upregulated in response to competition akin to competitive traits like antibiotics. Although siderophores can act as a cooperative good for single genotypes, we argue that their role in competition is fundamental to understanding their biology.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号