首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2900篇
  免费   168篇
  国内免费   221篇
  2023年   21篇
  2022年   33篇
  2021年   32篇
  2020年   48篇
  2019年   68篇
  2018年   52篇
  2017年   86篇
  2016年   98篇
  2015年   81篇
  2014年   121篇
  2013年   152篇
  2012年   79篇
  2011年   158篇
  2010年   76篇
  2009年   176篇
  2008年   169篇
  2007年   163篇
  2006年   151篇
  2005年   151篇
  2004年   139篇
  2003年   100篇
  2002年   81篇
  2001年   44篇
  2000年   73篇
  1999年   72篇
  1998年   73篇
  1997年   50篇
  1996年   70篇
  1995年   68篇
  1994年   57篇
  1993年   50篇
  1992年   44篇
  1991年   47篇
  1990年   43篇
  1989年   44篇
  1988年   43篇
  1987年   28篇
  1986年   32篇
  1985年   33篇
  1984年   36篇
  1983年   18篇
  1982年   29篇
  1981年   16篇
  1980年   16篇
  1979年   14篇
  1978年   10篇
  1977年   7篇
  1975年   7篇
  1974年   7篇
  1973年   10篇
排序方式: 共有3289条查询结果,搜索用时 31 毫秒
101.
 The relationship between stand biomass production, and tree age and size is generally a curve with a maximum. To understand why wood production decreases in the final stages of stand development, the influence of increasing tree size on foliage chemical composition and substrate requirement for foliage construction in terms of glucose [CC, g glucose (g dry mass) –  1] was investigated in the evergreen conifer Picea abies (L.) Karst. Because it was already known that irradiance affects both foliage morphology and chemistry in this species, and it was expected that the foliage in large overstory trees would intercept on average more light than that in saplings in understory, irradiance was measured in the sampling locations and included in the statistical models. CC of needles increased with increasing total tree height (TH) and was independent of relative irradiance. A major reason for increasing CC with increasing TH was a greater proportion of carbon-rich lignin in the needles in large trees. However, lignin did not fully account for the observed changes in CC, and it was necessary to assume that certain other carbon-rich secondary metabolites such as terpenes also accumulate in the foliage of large trees. Enhanced requirements for needle mechanical strength as evidenced by greater lignin concentrations in large trees were attributed to increased water limitations with increasing tree height. Because water relations may also control the sink capacities for assimilate usage, apart from the mechanical requirements, they may provide an explanation for the accumulation of other energetically expensive compounds in the needles as well. Biomass partitioning within the shoot was another foliar parameter modified in response to increasing tree size. The proportion of shoot axes, which serve to provide needles with mechanical support and to supply them with water, decreased with increasing TH. This may limit water availability in the needles, and/or manifest a lower water requirement of the needles containing proportionally more supporting and storage substances, and consequently, less physiologically active compounds such as proteins. Probably the same factors which caused CC of the needles to depend on TH, were also responsible for greater CC of the shoot axes in larger trees. These results collectively suggest that increasingly more adverse water relations with increasing tree size may provide a mechanistic explanation for the decline in foliar biomass and its functional activity during stand ageing. Received: 9 April 1996 / Accepted: 14 January 1997  相似文献   
102.
鱼腥藻HB1017株化能异养生长的研究   总被引:5,自引:1,他引:4  
以葡萄糖和蔗糖为碳源,检测了六株(种)鱼腥藻的化能异养生产能力。其中鱼腥藻HB1017株化能异养生长较快,鱼腥藻HB0株化能异养生长缓慢,其余四种鱼腥藻不能进行化能异养生长。鱼腥藻HB1017株能利用果糖、葡萄糖、蔗糖为底物进行化能异养生长,但生长速率依次递减,差别显著。8磅湿热灭菌的果糖和蔗糖,与过滤灭菌的相比,只能维持低得多的化能异养生长速率。然而,8磅湿热灭菌的葡萄糖能维持比过滤法灭菌的高得  相似文献   
103.
Green plant cells can generate ATP in both chloroplasts and mitochondria. Hence the effect of photosynthesis on dark mitochondrial respiration can be considered at a variety of levels. Turnover of ceitric acid cycle dehydrogenases, which is essential for supply of carbon skeletons for amino acid synthesis, seems to be largely unaffected during photosynthesis. The source of carbon for the anaplerotic function of the citric acid cycle in light is however, not known with certainty. NADH generated in these reactions is probably not oxidised via the mitochondrial electron transfer chain coupled to ATP synthesis. However, it may be oxidised by the alternative cyanide-insensitive pathway, exported to the cytosol via the oxaloacetate-malate dicarboxylate shuttle or directly utilised for cytosolic nitrate reduction. Oxidation of succinate via cytochrome oxidase may also be similarly inhibited in light. Whether increase in the cytosolic ATP/ADP ratio in light is responsible for the inhibition of mitochondrial electron transfer to O2 is not clearly established, because the ATP/ADP ratio is reported to be already quite high in the dark. Effective collaboration between photophosphorylation and oxidative phosphorylation in order to maintain the cytosolic energy charge at a present high level is discussed.  相似文献   
104.
The ammonia oxidizing bacterium Nitrosomonas europaea was grown either (a) with added bicarbonate in the absence of added CO2 (bubbled through the culture), (b) with added bicarbonate plus low added CO2 (0.03% v/v), or (c) without added bicarbonate with high added CO2 (1% v/v). Cell doubling times of 12 h were observed in 1% cultures; doubling times of 2 to 3-fold longer wre found with 0.03% CO2 and/or bicarbonate grown cultures. The specific activity of carbonic anhydrase was 40–80% lower in cultures grown on 1% CO2. These results are compared with those in heterotrophic and photosynthetic microorganisms.Scientific Contribution Number 1241 from the New Hampshire Agricultural Experiment Station  相似文献   
105.
Summary (1) The distribution of the extracellular space (ECS) in the outer part of the locust compound eye has been mapped with lanthanum and ruthenium red, applied to the retina. (2) In the photoreceptor zone, about 2.4% of the volume is ECS, in agreement with radiotracer and electrical estimates. Of this ECS, about 70% lies in lacunae between ommatidia, but only 1–2% adjacent to the photosensitive rhabdom. The lacunae are filled with material which binds applied tracers, and are thought to be structural spaces. (3) It has been suggested several times that such a small cation pool is insufficient to sustain more than a few large photoresponses, but this is shown to be incorrect. Enough Na+ lies within the rhabdomal ECS and within rapid diffusional access to it, to impose no immediate limitation. (4) The palisade vacuoles surrounding the rhabdom are intracellular, and are typical of light as well as dark-adapted eyes. (5) Tracers fail to penetrate more than about 30 m into the axon zone, in agreement with electrical, dye and radiotracer indications of a blood-eye barrier near this point. Septate and gap junctions between glial membranes proliferate at this level, the lacunae disappear, and the axonal clefts narrow, but no tight junctions were seen. Comparison is made with the barrier around the nerve cord. (6) The secondary pigment cells in the retina may function as osmotic/ionic buffers, in conjunction with the blood-eye barrier.  相似文献   
106.
Photorespiration by Chlamydomonas reinhardtii and Anacystis nidulans was measured as the oxygen inhibition of CO2 uptake and the CO2 compensation points. Net photosynthesis was oxygen dependent in Chlamydomonas grown in 5% CO2, but CO2 insensitive in cultures bubbled with air. Anacystis, even when cultured in 5% CO2, exhibited an CO2 insensitive net photosynthesis. The CO2 compensation point of Chlamydomonas grown in cultures bubbled with air and Anacystis grown in 5% CO2 enriched air, were reached shortly after the measurement was begun and the values were very low, less than 10 μl CO2 1?1; while Chlamydomonas grown in 5% CO2 enriched air for 4 days showed a high, but temporary CO2 compensation point (60 μl CO2 1?1). After a two hour adaptation in low CO2, a stable, low CO2 compensation point was reached. It seems that photorespiration can only be detected by the methods used in this study when the algae are cultured in high CO2, but a mechanism exists which blocks photorespiration when the green algae are adapted to low CO2 concentrations. When Chlamydomonas was treated with Diamox, an inhibitor of carbonic anhydrase, after cultivation in low CO2 (air), the cells behaved as if they had been grown in high CO2. They showed an oxygen sensitive net photosynthesis and a high CO2 compensation point. This indicates that carbonic anhydrase plays an important role in the regulation of a measurable photorespiration in Chlamydomonas. The results are discussed in relation to previous observations of photorespiration measured by enzyme assay, metabolic products and gas exchange properties.  相似文献   
107.
R. Hampp 《Planta》1980,150(4):291-298
Purified intact protoplasts were isolated from etiolated and greening leaves of Avena sativa. They were ruptured by forcing them through a 20-m aperture nylon net and immediately thereafter fractionated into a pure pellet of plastids (well above 70% of total plastids), a layer of mitochondria only slightly contaminated by other cellular constituents (about 50% of total mitochondria), and a cytoplasmic supernatant. This was achieved within 60 s by an integrated method of homogenation of protoplasts and centrifugal filtration of the homogenate on a gradient of silicone oils, contained together with the nylon net in 450 l microtubes, and verified by comparing the levels of activity of specific markers within the three fractions obtained. With appropriate modifications to immediately quench metabolic reactions within the fractions, this method allows the determination of metabolite levels within plastids, mitochondria, and the cytoplasmic compartment of intact protoplasts. The applicability of this technique is demonstrated by the determination of ATP in the plastids, mitochondria, and the cytoplasm of protoplasts obtained from etiolated and greening primary leaves of Avena. The levels of ATP, corrected for contamination of the fractions by each other, exhibit a pronounced transient increase during greening, especially within the cytoplasm.Abbreviations BSA bovine serum albumin - Cyt c cytochrome c - EDTA ethylenediamine tetraacetic acid - HEPES N-2-hydroxyethyl-piperazine-N-2-ethane sulphonic acid - MES 2(N-morpholino) ethane sulphonic acid - PGA 3-phosphoglyceric acid - PEP phosphoenol pyruvic acid - RuBP ribulose-1.5-bis-phosphate  相似文献   
108.
Tetrahymena pyriformis cells in the logarithmic phase of growth accumulate 2.5–3.75 times as much calcium per unit volume as is present in the growth medium. It appears that most of this calcium is stored in a non-ionic form, with approximately 30% existing in the cilia, near its site of action in effecting ciliary reversal. The exchange of extracellular 45Ca2+ with the major internal pools is extremely rapid, exhibiting a t12 of less than 0.5 h. Sites located on the cilia are responsible for 35–50% of Ca2+ influx, with the remainder entering through other positions on the cell surface.  相似文献   
109.
The adenine nucleotide pools and the NADH pool were compared in intact Nitrobacter winogradskyi cells grown under different conditions. The NADH pool was highest in nitrite-grown cells (22.0 nmol/mg N), less high in acetategrown cells (15.1 nmol/mg N),and lowest in pyruvate-grown cells (11.9 nmol/mg N).The adenine nucleotide pools and the NADH pool were determined after the transition from anaerobic to aerobic conditions.In both autotrophically and heterotrophically grown cells the ATP pool decreased within the first second after the addition of oxygen and then increased.In cells grown with nitrite or acetate the NADH pool increased the first second after the addition of oxygen then decreased below the initial value. In pyruvate-grown cells the changes in the NADH pool were less obvious.In the presence of rotenone autotrophic cells were able to generate ATP, but the reverse energy-dependent electron transport was inhibited. Consequently, NADH was not synthesized. N,N-dicyclohexylcarbodiimide an inhibitor of ATPase, prevented both ATP and NADH generation.Abbreviations DCCD N,N-dicyclohexylcarbodiimide  相似文献   
110.
The effect of carbon dioxide on pigment and membrane content in Synechococcus lividus was studied by depriving cells of CO2 and examining cell populations biochemically and by electron microscopy. After 120 h of CO2 deprivation, S. lividus lost all detectable chlorophyll a and C-phycocyanin. Such bleached cultures were mustard yellow, the result of approximately 1.8 times more carotenoid per cell than green control cultures.Although cells from beached cultures appeared morphologically identical to control green cells when examined by light microscopy, electron microscopic examination revealed them to be devoid of detectable thylakoid membrane. Thylakoid membrane could not be recovered by physical isolation or revealed by freeze etching of bleached S. lividus. In addition, inclusion bodies characteristically found in S. lividus were also absent.Reintroduction of CO2 into bleached cultures resulted in a rapid resynthesis of both chlorophyll a and C-phycocyanin. Electron microscopic examination of these regreening cultures revealed that thylakoid membrane was also rapidly resynthesized. Growth of regreened cultures did not occur until there was the synthesis of a full complement of chlorophyll a, C-phycocyanin, and thylakoid membrane.A time course study of the cytological events occurring during bleaching and regreening is presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号