首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2899篇
  免费   166篇
  国内免费   228篇
  3293篇
  2023年   22篇
  2022年   34篇
  2021年   32篇
  2020年   48篇
  2019年   68篇
  2018年   52篇
  2017年   86篇
  2016年   98篇
  2015年   81篇
  2014年   121篇
  2013年   152篇
  2012年   79篇
  2011年   158篇
  2010年   76篇
  2009年   176篇
  2008年   169篇
  2007年   163篇
  2006年   151篇
  2005年   151篇
  2004年   139篇
  2003年   100篇
  2002年   81篇
  2001年   44篇
  2000年   73篇
  1999年   72篇
  1998年   73篇
  1997年   50篇
  1996年   70篇
  1995年   68篇
  1994年   57篇
  1993年   50篇
  1992年   44篇
  1991年   47篇
  1990年   43篇
  1989年   44篇
  1988年   43篇
  1987年   28篇
  1986年   32篇
  1985年   33篇
  1984年   36篇
  1983年   18篇
  1982年   29篇
  1981年   16篇
  1980年   16篇
  1979年   14篇
  1978年   10篇
  1977年   7篇
  1975年   7篇
  1974年   7篇
  1973年   10篇
排序方式: 共有3293条查询结果,搜索用时 15 毫秒
11.
Summary The gas exchange and water relations of the hemiparasite Pthirusa maritima and two its mangrove host species, Conocarpus erectus and Coccoloba uvifera, were studied in an intertidal zone of the Venezuelan coast. Carbon uptake and transpiration, leaf osmotic and total water potential, as well as nutrient content in the xylem sap and leaves of mistletoes and hosts were followed through the dry and wet season. In addition, carbon isotope ratios of leaf tissue were measured to further evaluate water use efficiency. Under similar light and humidity conditions, mistletoes had higher transpiration rates, lower leaf water potentials, and lower water use efficiencies than their hosts. Potassium content was much higher in mistletoes than in host leaves, but mineral nutrient content in the xylem sap of mistletoes was relatively low. The resistance of the liquid pathway from the soil to the leaf surface of mistletoes was larger than the total liquid flow resistance of host plants. Differences in the daily cycles of osmotic potential of the xylem sap also indicate the existence of a high resistance pathway along the vascular connection between the parasite pathway along the vascular connection between the parasite and its host. P. maritima mistletoes adjust to the different physiological characteristics of the host species which it parasitizes, thus ensuring an adequate water and carbon balance.  相似文献   
12.
Cell extracts (27000xg supernatant) of acetate grown Methanosarcina barkeri were found to have carbonic anhydrase activity (0.41 U/mg protein), which was lost upon heating or incubation with proteinase K. The activity was inhibited by Diamox (apparent K i=0.5 mM), by azide (apparent K i=1 mM), and by cyanide (apparent K i=0.02 mM). These and other properties indicate that the archaebacterium contains the enzyme carbonic anhydrase (EC 4.2.1.1). Evidence is presented that the protein is probably located in the cytoplasm. Methanol or H2/CO2 grown cells of M. barkeri showed no or only very little carbonic anhydrase activity. After transfer of these cells to acetate medium the activity was induced suggesting a function of this enzyme in acetate fermentation to CO2 and CH4. Interestingly, Desulfobacter postgatei and Desulfotomaculum acetoxidans, which oxidize acetate to 2 CO2 with sulfate as electron acceptor, were also found to exhibit carbonic anhydrase activity (0.2 U/mg protein).  相似文献   
13.
Biotransformations of aromatic aldehydes by acetogenic bacteria   总被引:2,自引:0,他引:2  
Vanillin was subject to O demethylation and supported growth of Clostridium formicoaceticum and Clostridium thermoaceticum. Vanillin was also stimulatory to the CO-dependent growth of Peptostreptococcus productus. The aldehyde substituent of vanillin was metabolized by routes which were dependent upon both the acetogen and a co-metabolizable substrate (e.g. carbon monoxide [CO]). C. formicoaceticum and C. thermoaceticum oxidized the aldehyde group of vanillin to the carboxyl level, while P. productus reduced the aldehyde group of vanillin to the alcohol level. In contrast, during CO-dependent growth, C. thermoaceticum reduced 4-hydroxybenzaldehyde to 4-hydroxybenzyl alcohol while P. productus both reduced and oxidized 4-hydroxybenzaldehyde to 4-hydroxybenzyl alcohol and 4-hydroxybenzoate, respectively. These metabolic potentials indicate aromatic aldehydes may affect the flow of reductant during acetogenesis.  相似文献   
14.
Carbon and nitrogen partitioning was examined in a wild-type and a nitrate reductase-deficient mutant (A317) of Pisum sativum L. (ev. Juneau), effectively inoculated with two strains of Rhizobium leguminosarum (128C23 and 128C54) and grown hydroponically in medium without nitrogen for 21 days, followed by a further 7 days in medium without and with 5 mM NH4NO3. In wild-type symbioses the application of NH4NO3 significantly reduced nodule growth, nitrogenase (EC 1.7.99.2) activity, nodule carbohydrates (soluble sugars and starch) and allocation of [14C]-labelled (NO3, NH4+, amino acids) in roots. In nodules, there was a decline in amino acids together with an increase in inorganic nitrogen concentration. In contrast, symbioses involving A317 exhibited no change in nitrogenase activity or nodule carbohydrates, and the concentrations of all nitrogenous solutes measured (including asparagine) in roots and nodules were enhanced. Photosynthate allocation to the nodule was reduced in the 128C23 symbiosis. Nitrite accumulation was not detected in any case. These data cannot be wholly explained by either the carbohydrate deprivation hypothesis or the nitrite hypothesis for the inhibition of symbiotic nitrogen fixation by combined nitrogen. Our result with A317 also provided evidence against the hypothesis that NO3 and NH4+ or its assimilation products exert a direct effect on nitrogenase activity. It is concluded that more than one legume host and Rhizobium strain must be studied before generalizations about Rhizobium /legume interactions are made.  相似文献   
15.
A brief review of the photosynthetic apparatus of higher plants is given, followed by a consideration of the modifications induced in this apparatus by changes in light intensity and light quality. Possible strategies by which plants may optimize photosynthetic activity by both long- and short-term modifications of their photosynthetic apparatus in response to changing light regimes are discussed.  相似文献   
16.
The labeling patterns in malic acid from dark 13CO2 fixation in seven species of succulent plants with Crassulacean acid metabolism were analysed by gas chromatography-mass spectrometry and 13C-nuclear magnetic resonance spectrometry. Only singly labeled malic-acid molecules were detected and on the average, after 12–14 h dark 13CO2 fixation the ratio of [4-13C] to [1-13C] label was 2:1. However the 4-C carboxyl contained from 72 to 50% of the label depending on species and temperature. The 13C enrichment of malate and fumarate was similar. These data confirm those of W. Cockburn and A. McAuley (1975, Plant Physiol. 55, 87–89) and indicate fumarase randomization is responsible for movement of label to 1-C malic acid following carboxylation of phosphoenolpyruvate. The extent of randomization may depend on time and on the balance of malic-acid fluxes between mitochondria and vacuoles. The ratio of labeling in 4-C to 1-C of malic acid which accumulated following 13CO2 fixation in the dark did not change during deacidification in the light and no doubly-labeled molecules of malic acid were detected. These results indicate that further fumarase randomization does not occur in the light, and futile cycling of decarboxylation products of [13C] malic acid (13CO2 or [1-13C]pyruvate) through phosphoenolpyruvate carboxylase does not occur, presumably because malic acid inhibits this enzyme in the light in vivo. Short-term exposure to 13CO2 in the light after deacidification leads to the synthesis of singly and multiply labeled malic acid in these species, as observed by E.W. Ritz et al. (1986, Planta 167, 284–291). In the shortest times, only singly-labeled [4-13C]malate was detected but this may be a consequence of the higher intensity and better detection statistics of this ion cluster during mass spectrometry. We conclude that both phosphoenolpyruvate carboxylase (EC 4.1.1.32) and ribulose-1,5-biphosphate carboxylase (EC 4.1.1.39) are active at this time.Abbreviations CAM Crassulacean acid metabolism - GCMS gas chromatography-mass spectrometry - MS mass spectrometry - NMR nuclear magnetic resonance spectrometry - PEP phosphoenolpyruvate - RuBP ribulose 1,5-bisphosphate  相似文献   
17.
Elemental analyses of mammalian bone (e.g., strontium-calcium ratios, or Sr/Ca) distinguish between herbivores and carnivores; however, the relationships among herbivores are unclear. To study this question, a modern faunal sample from the Nagupande Tsetse Control Area (Zambezi drainage, Northwestern Zimbabwe) was used. This collection has the advantage of well-established geographical controls in addition to a varied fauna, which includes both bovids and suids. The grazing/browsing dietary status of each species was ascertained by means of isotopic analysis of carbon. Clear differences were seen in the δ13C of grazing and browsing animals; a specialized grazer was found to have significantly lower Sr/Ca than less specialized grazers and browsers. In this study it was also possible to examine differences in Sr/Ca by sex; female warthogs were found to have significantly lower Sr/Ca than males. The variation in certain animal groups was found to be abnormal. Implications for reconstruction of prehistoric human diets using trace-element techniques are discussed.  相似文献   
18.
Summary Growth and nitrogen partitioning were investigated in the biennial monocarp Arctium tomentosum in the field, in plants growing at natural light conditions, in plants in which approximately half the leaf area was removed and in plants growing under 20% of incident irradiation. Growth quantities were derived from splined cubic polynomial exponential functions fitted to dry matter, leaf area and nitrogen data.Main emphasis was made to understanding of the significance of carbohydrate and nitrogen storage of a large tuber during a 2-years' life cycle, especially the effect of storage on biomass and seed yield in the second season. Biomass partitioning favours growth of leaves in the first year rosette stage. Roots store carbohydrates at a constant rate and increase storage of carbohydrates and nitrogen when the leaves decay at the end of the first season. In the second season the reallocation of carbohydrates from storage is relatively small, but reallocation of nitrogen is very large. Carbohydrate storage just primes the growth of the first leaves in the early growing season, nitrogen storage contributes 20% to the total nitrogen requirement during the 2nd season. The efficiency of carbohydrate storage for conversion into new biomass is about 40%. Nitrogen is reallocated 3 times in the second year, namely from the tuber to rosette leaves and further to flower stem leaves and eventually into seeds. The harvest index for nitrogen is 0.73, whereas for biomass it is only 0.19.  相似文献   
19.
Summary The lymphoid organs of rosy barb (Barbus conchonius) and carp (Cyprinus carpio) were investigated for their phagocytic uptake of carbon, after its intraperitoneal injection. Carbon handling was similar in both species. It was first detected in the lymphoid organs at 30 min after injection. During the first day, carbon was phagocytized by macrophages situated in the spleen within the ellipsoids and in the red pulp. In head and trunk kidney, carbon was found in macrophages scattered throughout the haemopoietic parenchyma, and in cells lining the blood sinuses. In the spleen, macrophages replete with carbon left the ellipsoidal structures and formed aggregates with pigment-containing macrophages from day 6 onwards. In all lymphoid organs, almost all carbon was ultimately concentrated in the melano-macrophage centres.  相似文献   
20.
The influence of a number of environmental parameters on the fermentation of glucose, and on the energetics of growth of Clostridium butyricum in chemostat culture, have been studied. With cultures that were continuously sparged with nitrogen gas, glucose was fermented primarily to acetate and butyrate with a fixed stoichiometry. Thus, irrespective of the growth rate, input glucose concentration specific nutrient limitation and, within limits, the culture pH value, the acetate/butyrate molar ratio in the culture extracellular fluids was uniformly 0.74±0.07. Thus, the efficiency with which ATP was generated from glucose catabolism also was constant at 3.27±0.02 mol ATP/mol glucose fermented. However, the rate of glucose fermentation at a fixed growth rate, and hence the rate of ATP generation, varied markedly under some conditions leading to changes in the Y glucose and Y ATP values. In general, glucose-sufficient cultures expressed lower yield values than a correponding glucose-limited culture, and this was particularly marked with a potassium-limited culture. However, with a glucose-limited culture increasing the input glucose concentration above 40g glucose·l-1 also led to a significant decrease in the yield values that could be partially reversed by increasing the sparging rate of the nitrogen gas. Finally glucose-limited cultures immediately expressed an increased rate of glucose fermentation when relieved of their growth limitation. Since the rate of cell synthesis did not increase instantaneously, again the yield values with respect to glucose consumed and ATP generated transiently decreased.Two conditions were found to effect a change in the fermentation pattern with a lowering of the acetate/butyrate molar ratio. First, a significant decrease in this ratio was observed when a glucose-limited culture was not sparged with nitrogen gas; and second, a substantial (and progressive) decrease was observed to follow addition of increasing amounts of mannitol to a glucose-limited culture. In both cases, however, there was no apparent change in the Y ATP value.These results are discussed with respect to two imponder-ables, namely the mechanism(s) by which C. butyricum might partially or totally dissociate catabolism from anabolism, and how it might dispose of the excess reductant [as NAD(P)H] that attends both the formation of acetate from glucose and the fermentation of mannitol. With regards to the latter, evidence is presented that supports the conclusion that the ferredoxin-mediated oxidation of NAD(P)H, generating H2, is neither coupled to, nor driven by, an energy-yielding reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号