首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2776篇
  免费   179篇
  国内免费   138篇
  2024年   6篇
  2023年   13篇
  2022年   29篇
  2021年   30篇
  2020年   48篇
  2019年   59篇
  2018年   45篇
  2017年   89篇
  2016年   100篇
  2015年   66篇
  2014年   115篇
  2013年   156篇
  2012年   70篇
  2011年   154篇
  2010年   62篇
  2009年   161篇
  2008年   164篇
  2007年   157篇
  2006年   144篇
  2005年   143篇
  2004年   130篇
  2003年   88篇
  2002年   81篇
  2001年   39篇
  2000年   59篇
  1999年   70篇
  1998年   64篇
  1997年   48篇
  1996年   65篇
  1995年   68篇
  1994年   63篇
  1993年   54篇
  1992年   45篇
  1991年   46篇
  1990年   41篇
  1989年   42篇
  1988年   36篇
  1987年   22篇
  1986年   27篇
  1985年   32篇
  1984年   35篇
  1983年   20篇
  1982年   27篇
  1981年   14篇
  1980年   19篇
  1979年   10篇
  1978年   6篇
  1975年   6篇
  1973年   11篇
  1971年   4篇
排序方式: 共有3093条查询结果,搜索用时 296 毫秒
111.
Alan Stemler 《BBA》1980,593(1):103-112
In broken chloroplasts the presence of 100 mM sodium formate at pH 8.2 will specifically lengthen the Photosystem II relaxation times of the reactions S′2 → S3 and S′3 → S0. Rates of reactions S′0 → S1 and S′1 → S2 remain unaffected. Evidence is presented which indicates the discrimination among S-states by formate cannot be attributed to a block imposed on the reducing side of Photosystem II. The results are interpreted in context of the known interaction of formate and CO2 which is bound to the Photosystem II reaction center complex. It is proposed that those S-state transitions which show extended relaxation times in the presence of formate must result in the momentary release and rebinding of CO2. Furthermore since formate is acting on the oxygen-evolving side of Photosystem II, it would seem that CO2 is released in reactions that occur there. A chemical model of oxygen evolution is presented. It is based on the hypothesis that hydrated CO2 is the immediate source of photosynthetically evolved oxygen and explains why, under certain conditions formate slows only the S-state transitions S′2 → S3 and S′3 → S0.  相似文献   
112.
The central focus of this article is to assess the dynamic effects of nuclear and renewable energy consumption on CO2 emissions, for a given level of income and energy consumption. We apply an autoregressive distributed lag (ARDL) approach to cointegration to U.S. data from 1960 to 2010. We find that nuclear energy consumption indeed reduces CO2 emissions in both the short- and long-run, while renewable energy consumption does only in the short-run. We also find that income increases CO2 emissions in the long-run after showing the environmental Kuznets curve (EKC) initially in the short-run. Finally, energy consumption is found to have a negative impact on reducing CO2 emissions in the short- and long-run.  相似文献   
113.
Preparations of rat liver sinusoidal plasma membrane have been tested for their ability to metabolize the hepatotoxin carbon tetrachloride (CCl4) to reactive free radicals in vitro and compared in this respect with standard preparations of rat liver microsomes. The sinusoidal plasma membranes were relatively free of endoplasmic reticulum-associated activities such as the enzymes of the cytochrome P450 system and glucose-6-phosphatase. CCl4 metabolism was measured as (i) covalent binding of [14C]-CCl4 to membrane protein, (ii) electron spin resonance spin-trapping of CCl3. radicals and (iii) CCl4-induced lipid peroxidation. By all of these tests, purified sinusoidal plasma membranes were found unable to metabolize CCl4. The fatty acid composition of the plasma membranes was almost identical to that of the microsomal preparation and both membrane fractions exhibited similar rates of the lipid peroxidation that was stimulated non-enzymically by gamma-radiation or incubation with ascorbate and iron. The absence of CCl4-induced lipid peroxidation in the plasma membranes seems to be due, therefore, to an absence of CCl4 activation rather than an inherent resistance to lipid peroxidation. We conclude that damage to the hepatocyte plasma membrane during CCl4 intoxication is not due to a significant local activation of CCl4 to CCl3. within that membrane.  相似文献   
114.
A biochromatographic system was used to study the direct effect of carbon nanoparticles (CNPs) on the acetylcholinesterase (AChE) activity. The AChE enzyme was covalently immobilized on a monolithic CIM-disk via its NH2 residues. Our results showed an increase in the AChE activity in presence of CNPs. The catalytic constant (kcat) was increased while the Michaelis constant (Km) was slightly decreased. This indicated an increase in the enzyme efficiency with increase of the substrate affinity to the active site. The thermodynamic data of the activation mechanism of the enzyme, i.e. ΔH* and ΔS*, showed no change in the substrate interaction mechanism with the anionic binding site. The increase of the enthalpy (ΔH*) and the entropy (ΔS*) with decrease in the free energy of activation (Ea) was related to structural conformation change in the active site gorge. This affected the stability of water molecules in the active site gorge and facilitated water displacement by substrate for entering to the active site of the enzyme.  相似文献   
115.
A sequence of paleosols in the Solo Basin, Central Java, Indonesia, documents the local and regional environments present when Homo erectus spread through Southeast Asia during the early Pleistocene. The earliest human immigrants encountered a low-relief lake-margin landscape dominated by moist grasslands with open woodlands in the driest landscape positions. By 1.5 Ma, large streams filled the lake and the landscape became more riverine in nature, with riparian forests, savanna, and open woodland. Paleosol morphology and carbon isotope values of soil organic matter and pedogenic carbonates indicate a long-term shift toward regional drying or increased duration of the annual dry season through the early Pleistocene. This suggests that an annual dry season associated with monsoon conditions was an important aspect of the paleoclimate in which early humans spread from Africa to Southeast Asia.  相似文献   
116.
Utilizing redox‐active organic compounds for future energy storage system (ESS) has attracted great attention owing to potential cost efficiency and environmental sustainability. Beyond enriching the pool of organic electrode materials with molecular tailoring, recent scientific efforts demonstrate the innovations in various cell chemistries and configurations. Herein, recent major strategies to build better organic batteries, are highlighted: diversifying charge‐carrying ions, modifying electrolytes, and utilizing liquid‐type organic electrodes. Each approach is summarized along with their advantages over Li‐ion batteries (LIBs). An outlook is also provided on the practical realization of organic battery systems, which hints at possible solutions for future sustainable ESSs.  相似文献   
117.
Molecularly imprinted polymer‐modified glassy carbon electrode (GCE)‐based electrochemical sensor is prepared using the electropolymerization of aniline in the presence of melamine (MA) as a template. In this work, the advantages of molecularly imprinted conducting polymers (MICPs) and electroanalytical methods were combined to obtain an electronic device with better performances. The sensor performance was evaluated by cyclic voltammetry (CV) and square wave voltammetry (SWV) with the linear range of 0.6‐16 × 10?9M, quantification limit of 14.9 × 10?10M, and detection limit of 4.47 × 10?10M (S/N = 3). The selectivity of the sensor was tested in the presence of acetoguanamine (AGA), diaminomethylatrazine (DMT), casein, histidine, and glycine interfering molecules taken at the triple concentration with MA that demonstrated too small current response compared with that of the analyte indicating high specificity of the sensor towards the template. The sensor was successfully applied to determine MA in infant formula samples with significant recovery greater than 96% and relative standard deviation (RSD) less than 4.8%. Moreover, the good repeatability, recyclability, and stability make this sensor device promising for the real‐time monitoring of MA in different food stuffs.  相似文献   
118.
为了解Cd污染胁迫下树木对CO_2浓度升高、N添加及其复合作用的响应,应用开顶箱,探讨Cd及其与CO_2、N的复合作用对大叶相思(Acacia auriculiformis)基径、树高和生物量的影响。结果表明,Cd添加抑制大叶相思基径、树高和生物量的增长,并且具有时间滞后性;大气CO_2浓度升高、N添加及CO_2+N均有缓解Cd对植物生长抑制作用的趋势,其中, N添加更能促进大叶相思基径的生长,树高生长则对CO_2升高更为敏感;在Cd污染土壤中,N添加的缓解作用最显著。因此,氮肥管理是重金属污染土地修复初期促进植物修复的重要策略。  相似文献   
119.
《L'Anthropologie》2021,125(2):102864
The identification of dietary habits is increasingly seen as a fundamental aspect for studying the ancient human populations. Accordingly, several projects aiming to identify Paleolithic individuals’ dietary patterns were developed to analyze the organic component of bone tissue and identify isotopic markers to reconstruct the food typology. Bone fragments from six individuals were selected for carbon and nitrogen stable isotopes analysis. The interpretation of human isotopic data was framed through a dataset of twenty-one Italian Paleolithic individuals. The isotopic data generated for the Paleolithic individuals agree with the information already provided by the archaeological record concerning the Italian hunter and gatherer communities. Their subsistence economy was essentially grounded upon the exploitation of high protein foods, either from terrestrial fauna resources or inland lacustrine or riverine species.  相似文献   
120.
Carbon monoxide (CO) is a promising carbon source for producing value-added biochemicals via microbial fermentation. However, its microbial conversion has been challenging because of difficulties in genetic engineering of CO-utilizing microorganisms and, more importantly, maintaining CO consumption which is negatively affected by the toxicity of CO and accumulated byproducts. To overcome these issues, we devised mutualistic microbial consortia, co-culturing Eubacterium limosum and genetically engineered Escherichia coli for the production of 3-hydroxypropionic acid (3-HP) and itaconic acid (ITA). During the co-culture, E. limosum assimilated CO and produced acetate, a toxic by-product, while E. coli utilized acetate as a sole carbon source. We found that this mutualistic interaction dramatically stabilized and improved CO consumption of E. limosum compared to monoculture. Consequently, the improved CO consumption allowed successful production of 3-HP and ITA from CO. This study is the first demonstration of value-added biochemical production from CO using a microbial consortium. Moreover, it suggests that synthetic mutualistic microbial consortium can serve as a powerful platform for the valorization of CO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号