首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2517篇
  免费   182篇
  国内免费   114篇
  2813篇
  2023年   15篇
  2022年   27篇
  2021年   33篇
  2020年   42篇
  2019年   60篇
  2018年   51篇
  2017年   81篇
  2016年   100篇
  2015年   74篇
  2014年   128篇
  2013年   143篇
  2012年   81篇
  2011年   148篇
  2010年   62篇
  2009年   160篇
  2008年   144篇
  2007年   139篇
  2006年   125篇
  2005年   124篇
  2004年   111篇
  2003年   77篇
  2002年   66篇
  2001年   30篇
  2000年   53篇
  1999年   54篇
  1998年   56篇
  1997年   39篇
  1996年   56篇
  1995年   62篇
  1994年   49篇
  1993年   43篇
  1992年   38篇
  1991年   40篇
  1990年   34篇
  1989年   41篇
  1988年   34篇
  1987年   18篇
  1986年   24篇
  1985年   26篇
  1984年   28篇
  1983年   13篇
  1982年   22篇
  1981年   10篇
  1980年   11篇
  1979年   7篇
  1978年   5篇
  1977年   4篇
  1975年   6篇
  1973年   9篇
  1971年   3篇
排序方式: 共有2813条查询结果,搜索用时 15 毫秒
21.
Gerd Esser 《Plant Ecology》1995,121(1-2):175-188
The High Resolution Biosphere Model (HRBM), which has been developed by the group of the author, was used to investigate the carbon balance of the vegetation and the soil in the ecosystems of Monsoon Asia in comparison to the rest of the world. The HRBM is a global grid-based (0.5 degree resolution) model with a monthly time step. It includes modules for natural vegetation, land use, vegetation fires, vegetation composition. A historical carbon budget was calculated for the period 1860–1978 and, on a global scale, validated using atmospheric CO2 data. Based on the per-country development of the population and their requirements, different reasonable scenarios were used to investigate the potential impacts of land use and deforestation in the period 1990–2050. The HRBM calculates considerable contributions of Monsoon Asia to the global CO2 emissions due to land use changes in the past. Between 1860 and 1978, about 1/4 of the global releases from land use changes came from South Asian and Southeast Asian biota. The future contributions in the period 1990–2050 depend on the assumed development of the agricultural methods. If the intensity of agriculture and the agricultural productivity will stay the same as in the 1980s, there will be a strong need to increase agricultural areas, and thus deforestation will dominate. If there will be a change over to intensive methods of agricultural production, the presently used areas might be sufficient to provide resources to the growing population.  相似文献   
22.
The resiliency of rats during early postnatal development to CCl4 or to an interactive hepatotoxicity of chlordecone (CD) + CCl4 has been shown to be due to an efficient stimulation of tissue repair. The objective of the current study was to investigate if this is due to efficient expression of transforming growth factor-α (TGF-α) and proto-oncogenes. Postnatally developing (20 day old) and adult (60 day old) male Sprague–Dawley rats were challenged with a single low dose of CCl4 (100 μL/kg, ip) or corn oil. Liver samples were collected during a time course (0–96 h) after the administration of CCl4 and used to examine TGF-α and early (c-fos) and late (H-ras and K-ras) proto-oncogenes mRNA expressions. Significant increases in TGF-α, H-ras, and K-ras gene expressions were evident as early as 12 hours after CCl4 and peaked between 24 and 48 hours in an age-dependent manner as detected by slot-blot analysis. Results of the study revealed three- and twofold increases in TGF-α gene expression in 20 and 60 day old rats, respectively, after CCl4. There were 3.5- and 2.5-fold increases in H-ras and 4.4- and 3.4-fold increases in K-ras in 20 and 60 day old rats, respectively. In contrast, a 10-fold increase in c-fos mRNA expression was evident in 20 day old rats 1 hour after CCl4 treatment, returning to the baseline value by 3 hours, whereas in 60 day old rats, this increase was less than twofold. The overall findings of this study indicate that TGF-α and the early and late proto-oncogene mRNA expressions were enhanced in an age- and time-dependent manner in response to a low dose of CCl4. These results further strengthen the view that the remarkable resiliency of rats to hepatotoxicants during early postnatal development is due to substantial increases in stimulation of hepatocellular regeneration and tissue repair mechanisms, leading to regression of liver injury and recovery. © 1996 John Wiley & Sons, Inc.  相似文献   
23.
The localization of the dissimilatory sulfite reductase in Desulfovibrio desulfuricans strain Essex 6 was investigated. After treatment of the cells with lysozyme, 90% of the sulfite reductase activity was found in the membrane fraction, compared to 30% after cell rupture with the French press. Sulfite reductase was purified from the membrane (mSiR) and the soluble (sSiR) fractiion. On SDS-PAGE, both mSiR and sSiR exhibited three bands at 50, 45 and 11 kDa, respectively. From their UV/VIS properties (distinct absorption maxima at 391, 410, 583, 630 nm, enzymes as isolated) and the characteristic red fluorescence in alkaline solution, mSiR and sSiR were identified as desulfoviridin. Sulfite reductase (HSO3 -H2S) activity was reconstituted by coupling of mSiR to hydrogenase and cytochrome c 3 from D. desulfuricans. The specific activity of mSiR was 103 nmol H2 min-1 mg-1, and sulfide was the major product (72% of theoretical yield). No coupling was found with sSiR under these conditions. Furthermore, carbon monoxide was used to diferentiate between the membrane-bound and the soluble sulfite reductase. In a colorimetric assay, with photochemically reduced methyl viologen as redox mediator, CO stimulated the activity of sSiR significantly. CO had no effect in the case of mSiR. These studies documented that, as isolated, both forms of sulfite reductase behaved differently in vitro. Clearly, in D. desulfuricans, the six electron conversion HSO3 -H2S was achieved by a membranebound desulfoviridin without the assistance of artificial redox mediators, such as methyl viologen.Abbreviations SiR sulfite reductase - mSiR sulfite reductase purified from membranes - sSiR sulfite reductase purified from the soluble fraction Enzymes Sulfite reductase, EC 1.8.99.1 Cytochrome c 3 hydrogenase, EC 1.12.2.1  相似文献   
24.
Gram-positive, non-spore-forming, non-acid-fast, rod-shaped aerobic bacteria with the ability to desulfurize dibenzothiophene (DBT) or dibenzosulfone (DBTO2) were isolated from soil samples contaminated with fossil fuels. Using a bioavailability method, cells with the desired DbtS+ phenotype were enriched. Modified fluorescence and colorimetric assays were used for the initial detection of 2-hydroxybiphenyl (OH-BP) in microtiter plates; subsequently, isolates were grown in wells of microtiter plates and screened for the production of desulfurization product. Fluorescence under UV light and the production of colored product in the phenol assay were used as presumptive indications of production of OH-BP. Confirmation of the presence of OH-BP was achieved with HPLC, UV-absorbance, and mass spectrometry. Nutrient utilization and fatty acid composition (as discerned with Biolog plates and gas chromatography, respectively) were used to identify presumptively the strains as Rhodococcus erythropolis; colony and cell morphology may not be consistent with the identification achieved by nutrient utilization and fatty acid composition. The desulfurization end product, OH-BP, can not be used as carbon source by the tested strain, N1-36.  相似文献   
25.
We present the results of a 5-year examination of variation in the stable carbon isotope composition () of three C3 graminoid species from a Sandhills prairie: Agropyron smithii, Carex heliophila and Stipa comata. Although consistent species-specific patterns for mean were seen, there was also significant and substantial among-year and within-season variation in . A smaller contribution to variation in came from topographic variation among sampling sites. Effects of species, year, season and topography contribute to variation in in an additive manner. An association between climate and exists that is consistent with previous work suggesting that reflects the interplay between photosynthetic gas exchange and plant water relations. Within the growing season, the time over which integrates plant response to the environment ranges from days to months.  相似文献   
26.
The interaction between free radicals derived from the catalytic decomposition of carbon tetrachloride and tyrosine (the N-acetyl tyrosine ethyl ester, ATEE) under anaerobic and aerobic conditions was studied. The structure of the reaction products formed was desciphered by the GLC/MS analysis of their trimethylsilyl derivatives. Under anaerobic conditions the formation of the following products was found: (1) an unsaturated derivative of the amino acid; (2) the trimethylsilyl derivative of N-acetyl chloro tyrosine ethyl ester; (3) a hydroxyl adduct of ATEE ; (4) an ATEE adduct having a chlorine and a CCl3 group in the molecule (it is suggested that CCl3 is attached to the benzyl carbon and the chlorine located in the benzene ring); (5) an ATEE adduct having only a CCl3 group tentatively assigned to be located on the benzyl carbon; and (6) and (7) were found to be two isomers of an ATEE having one CCl3 on the aromatic ring. Under aerobic conditions the following reaction products were identified: Two products which were similar to those numbered (1) and (2) and formed anaerobically; (8) and (11) two isomeric dichlorinated adducts of ATEE; (9) and (10) two isomeric dichlorinated monohydroxylated derivatives of ATEE. Concerning the potential relevance of these findings, we consider that if similar interactions to those here reported occurred during CCl4 poisoning, the activity of enzymes having tyrosine in their active center might result in impairment. Further, enzymes operating on tyrosine moieties in proteins might be perturbed in their action if tyrosine groups were attacked by the free radicals arising from catalytic decomposition of CCl4 evidenced here.  相似文献   
27.
Effects of fire on water and salinity relations of riparian woody taxa   总被引:12,自引:0,他引:12  
Water and salinity relations were evaluated in recovering burned individuals of the dominant woody taxa from low-elevation riparian plant communities of the southwestern U.S. Soil elemental analyses indicated that concentrations of most nutrients increased following fire, contributing to a potential nutrient abundance but also elevated alluvium salinity. Boron, to which naturalized Tamarix ramosissima is tolerant, was also elevated in soils following fire. Lower moisture in the upper 30 cm of burned site soil profiles was attributed to shifts in evapotranspiration following fire. Higher leaf stomatal conductance occurred in all taxa on burned sites. This is apparently due to higher photosynthetic photon flux density at the midcanopy level and may be partially mitigated by reduced unit growth in resprouting burned individuals. Predawn water potentials varied little among sites, as was expected for plants exhibiting largely phreatophytic water uptake. Midday water potentials in recovering Salix gooddingii growing in the Colorado River floodplain reached levels which are considered stressful. Decreased hydraulic efficiency was also indicated for this species by examining transpiration-water potential regressions. Recovering, burned Tamarix and Tessaria sericea had enriched leaf tissue 13C relative to unburned controls. Higher water use efficiency following fire in these taxa may be attributed to halophytic adaptations, and to elevated foliar nitrogen in Tessaria. Consequently, mechanisms are proposed which would facilitate increased community dominance of Tamarix and Tessaria in association with fire. The theory that whole ecosystem processes are altered by invading species may thus be extended to include those processes related to disturbance.  相似文献   
28.
Gerhard Zotz  Klaus Winter 《Planta》1993,191(3):409-412
Diel (24 h) courses of net CO2 exchange of leaves were determined in eight species of tropical rainforest plants on Barro Colorado Island, Panama, during 1990 and 1991. The species included three canopy trees, one liana, two epiphytes and one hemiepiphyte. One of the species studied was growing in a rain-forest gap. Daily carbon gain varied considerably across species, leaf age, and season. The analysis of data for all plants from 64 complete day/night cycles revealed a linear relationship between the diurnal carbon gain and the maximum rate of net CO2 uptake, Amax. Nocturnal net carbon loss was about 10% of diurnal carbon gain and was positively related to Amax. We conclude that short-term measurements of light-saturated photosynthesis, performed at periodic intervals throughout the season, allow the annual leaf carbon balance in these rain-forest plants to be predicted.  相似文献   
29.
The increase in frequency and intensity of wildfires is seriously affecting forest ecosystems, especially in drought-prone areas. Trees’ recovery after fire is related to direct tree damage and is influenced by climate conditions, such as warm temperature and water shortage. In this study, we evaluate the post-fire effects on a Pinus pinaster Aiton forest growing in a hot and dry area of the Mediterranean region by comparing burned trees with severe crown reduction against unburned and not-defoliated trees. Inter-annual analyses of dendrochronology and stable isotopes in tree rings were combined with xylogenesis monitoring to investigate the effects of fire on tree growth, ecophysiological processes and wood formation. Tree-ring and isotope data showed a growth reduction and a decrease in photosynthetic activity in the burned trees, compared to control individuals, in the three years after fire. Further, the monitoring of cambial activity demonstrated a negative influence of warm and dry periods on wood formation, low xylem production, a delay in phenology and a reduction in xylem plasticity in burned trees. Our findings suggest that substantial photosynthetic limitations caused by crown defoliation and recurrent drought events could lead to severe growth decrease and reduction of trees ability to regain the pre-disturbance productivity rates.  相似文献   
30.
Rogers  H. H.  Dahlman  R. C. 《Plant Ecology》1993,104(1):117-131
Carbon dioxide is rising in the global atmosphere, and this increase can be expected to continue into the foreseeable future. This compound is an essential input to plant life. Crop function is affected across all scales from biochemical to agro-ecosystem. An array of methods (leaf cuvettes, field chambers, free-air release systems) are available for experimental studies of CO2 effects. Carbon dioxide enrichment of the air in which crops grow usually stimulates their growth and yield. Plant structure and physiology are markedly altered. Interactions between CO2 and environmental factors that influence plants are known to occur. Implications for crop growth and yield are enormous. Strategies designed to assure future global food security must include a consideration of crop responses to elevated atmospheric CO2. Future research should include these targets: search for new insights, development of new techniques, construction of better simulation models, investigation of belowground processes, study of interactions, and the elimination of major discrepancies in the scientific knowledge base.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号