首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1041篇
  免费   35篇
  国内免费   17篇
  2023年   7篇
  2022年   10篇
  2021年   10篇
  2020年   11篇
  2019年   12篇
  2018年   10篇
  2017年   6篇
  2016年   19篇
  2015年   20篇
  2014年   70篇
  2013年   65篇
  2012年   86篇
  2011年   124篇
  2010年   90篇
  2009年   39篇
  2008年   51篇
  2007年   40篇
  2006年   36篇
  2005年   36篇
  2004年   28篇
  2003年   21篇
  2002年   17篇
  2001年   8篇
  2000年   6篇
  1999年   18篇
  1998年   10篇
  1997年   15篇
  1996年   19篇
  1995年   20篇
  1994年   12篇
  1993年   18篇
  1992年   10篇
  1991年   13篇
  1990年   10篇
  1989年   7篇
  1988年   11篇
  1987年   11篇
  1986年   6篇
  1985年   13篇
  1984年   19篇
  1983年   13篇
  1982年   14篇
  1981年   4篇
  1980年   10篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1973年   1篇
排序方式: 共有1093条查询结果,搜索用时 738 毫秒
151.
Paclobutrazol [(2RS,3RS)-1-(4-chlorophenyl)methyl-4,4-dimethyl-2-(1h-1,2,4-trizol-1-yl)penten-3-ol] effectively decreased vegetative growth of rice (Oryza sativa L.) seedlings and increased the chlorophyll content. The number of veins in a leaf, the calculated number of stomata per leaf, and the length of guard cells were not altered by the paclobutrazol treatment, suggesting an effect on cell elongation. The allocation pattern of carbohydrates was changed by either gibberellin (GA) or paclobutrazol treatment. GA3 induced more shoot growth and less accumulation of starch than the control and paclobutrazol-treated seedlings. Photosynthetic ability was not affected by either paclobutrazol or GA3 treatment. Paclobutrazol-treated plants allocated a smaller amount of photosynthates for vegetative shoot growth and stored more as starch in the crowns than the control and GA3-treated plants. The same starch degrading activity in the crown tissue of paclobutrazol-treated seedlings as in control plants suggests that the accumulated starch is utilized in a normal activity for growth including leaf emergence, tiller formation, and root production, resulting in improved seedling quality. Received May 30, 1996; accepted December 10, 1996  相似文献   
152.
Starch synthesis and CO2 evolution were determined after incubating intact and lysed wheat (Triticum aestivum L. cv. Axona) endosperm amyloplasts with 14C-labelled hexose-phosphates. Amyloplasts converted [U-14C]glucose 1-phosphate (Glc1P) but not [U-14C]glucose 6-phosphate (Glc6P) into starch in the presence of ATP. When the oxidative pentose-phosphate pathway (OPPP) was stimulated, both [U-14C]Glc1P and [U-14C]Glc6P were metabolized to CO2, but Glc6P was the better precursor for the OPPP, and Glc1P-mediated starch synthesis was reduced by 75%. In order to understand the basis for the partitioning of carbon between the two potentially competing metabolic pathways, metabolite pools were measured in purified amyloplasts under conditions which promote both starch synthesis and carbohydrate oxidation via the OPPP. Amyloplasts incubated with Glc1P or Glc6P alone showed little or no interconversion of these hexose-phosphates inside the organelle. When amyloplasts were synthesizing starch, the stromal concentrations of Glc1P and ADP-glucose were high. By contrast, when flux through the OPPP was highest, Glc1P and ADP-glucose inside the organelle were undetectable, and there was an increase in metabolites involved in carbohydrate oxidation. Measurements of the plastidial hexose-monophosphate pool during starch synthesis and carbohydrate oxidation indicate that the phosphoglucose isomerase reaction is at equilibrium whereas the reaction catalysed by phosphoglucomutase is significantly displaced from equilibrium. Received: 29 March 1997 / Accepted: 5 June 1997  相似文献   
153.
Kalancho? pinnata (Lam.) Pers. (Crassulaceae), a succulent-leaved crassulacean-acid-metabolism plant, was grown in open-top chambers at ambient and elevated (two times ambient) CO2 concentrations under natural conditions at the Smithsonian Tropical Research Institute, Republic of Panama. Nocturnal increase in titratable acidity and nocturnal carbon gain were linearly related, increased with leaf age, and were unaffected by CO2 treatments. However, under elevated CO2, dry matter accumulation increased by 42–51%. Thus, the increased growth at elevated CO2 was attributable entirely to increased net CO2 uptake during daytime in the light. Malic acid was the major organic acid accumulated overnight. Nocturnal malate accumulation exceeded nocturnal citrate accumulation by six-to eightfold at both CO2 concentrations. Basal (predawn) starch levels were higher in leaves of plants grown at elevated CO2 but diurnal fluctuations of starch were of similar magnitude under both ambient and elevated CO2. In both treatments, nocturnal starch degradation accounted for between 78 and 89% of the nocturnal accumulation of malate and citrate. Glucose, fructose, and sucrose were not found to exhibit marked day-night fluctuations. Received: 4 March 1996 / Accepted: 25 May 1996  相似文献   
154.
Abstract: To study physiological responses of mature forest trees to elevated CO2 after lifetime growth under elevated atmospheric CO2 concentrations ( p CO2), photosynthesis, Rubisco content, foliar concentrations of soluble sugars and starch, sugar concentrations in transport tissues (phloem and xylem), structural biomass, and lignin in leaves and branches were investigated in 30- to 50-year-old Quercus pubescens and Q. ilex trees grown at two naturally elevated CO2 springs in Italy. Ribulose-1,5-bisphosphate carboxylase/oxygenase content was decreased in Q. pubescens grown under elevated CO2 concentrations, but not in Q. ilex. Photosynthesis was consistently higher in Q. pubescens grown at elevated CO2 as compared with "control" sites, whereas the response in Q. ilex was less pronounced. Stomatal conductance was lower in both species leading to decreased transpiration and increased instantaneous water use efficiency in Q. pubescens. Overall mean sugar + starch concentrations of the leaves were not affected by elevated p CO2, but phloem exudates contained higher concentrations of soluble sugars. This finding suggests increased transport to sinks. Qualitative changes in major carbon-bearing compounds, such as structural biomass and lignins, were only found in bark but not in other tissues. These results support the concept that the maintenance of increased rates of photosynthesis after long-term acclimation to elevated p CO2 provides a means of optimization of water relations under arid climatic conditions but does not cause an increase in aboveground carbon sequestration per unit of tissue in Mediterranean oak species.  相似文献   
155.
Tomasz Wyka 《Oecologia》1999,120(2):198-208
I tested hypotheses for ecological roles of storage carbohydrates in perennating organs (roots and branches) of alpine Oxytropis sericea, a leguminous herb. In naturally growing plants, total nonstructural carbohydrates achieved their maximal concentration in the fall, declined during winter, and reached minimal levels immediately after growth initiation in the spring. Experimental manipulation of carbon sink-source relations through shading of leaves of reproductive plants revealed that the normally unused portion of these carbohydrates is largely available for withdrawal. In another experiment, plants subjected to carbohydrate depletion through shading suffered decreased leaf growth after winter dormancy and had a lower probability of flowering and decreased inflorescence biomass. The dependence of reproductive growth on stored carbohydrates, however, was limited to its initial stages, because accumulation of storage carbohydrates occurred simultaneously with inflorescence expansion, flowering, and fruiting. Moreover, the whole-plant photosynthetic rate, estimated from gas exchange measurements also peaked at the time of inflorescence growth. To address whether stored reserves allow compensatory regrowth following defoliation, plants were subjected to experimental removal of leaves and inflorescences. Defoliated O. sericea partly regrew the lost leaves but withdrawal of stored carbohydrates was limited. Similarly, in a second defoliation experiment where infructescences were left intact, the plants used little stored carbohydrate and only partly compensated for fruit growth. However, carbohydrate accumulation was negatively affected by defoliation. While the ecological importance of stored nonstructural carbohydrates cannot be attributed to any function in isolation, winter respiration, leaf regrowth after winter, and early reproductive growth in O. sericea all depend to a significant extent on stored reserves. Maintaining a large storage pool may protect these functions in years when carbon status is less favorable than during this study. Received: 13 May 1998 / Accepted: 24 November 1998  相似文献   
156.
An attempt was done to identify some factors influencing the caecal fermentation pattern in poultry. Experiments were conducted to study effects of carbohydrate substrates (feed components and supplements) and antibiotics on the formation of volatile fatty acids (VFA) and methane in in vitro incubations of the caecal contents of 7-week-old chickens. Stoichiometry of fermentation differed in cultures with different carbohydrates. Fermentation pattern characterized by high propionate and low acetate production was found in cultures with lactose (0.447 and 0.376 mol/1 mol of VFA produced, respectively) and, to a lesser extent, also in cultures with raffinose. Acetate was the predominant metabolite of starch, pectin and xylan (0.727, 0.773 and 0.685 mol/1 mol of VFA produced, respectively). Fermentation of inulin resulted in high proportion of butyrate, 0.221 mol/1 mol of VFA. Other polysaccharides produced only 0.060–0.111 mol of butyrate per 1 mol of VFA. Oligosaccharides (lactose, raffinose) were fermented more rapidly than polysaccharides. Fermentation of inulin yielded more VFA than fermentation of starch, pectin and xylan. No production of VFA from carboxymethylcellulose was observed. On average, 11 mols of VFA were produced per mol of methane. Lasalocid significantly increased molar proportion of propionate, which is potentially beneficial from the point of view of salmonellae control. The magnitude of improvement, however, was small. Other feed antibiotics tested (avoparcin, bacitracin, lincomycin, spiramycin, tylosin, virginiamycin) produced only non-significant or marginal fermentation shifts. Formation of valerate, isoacids and methane was not significantly influenced by the substrate or by antibiotic treatment.  相似文献   
157.
158.
高碳水化合物日粮对翘嘴红鲌生长、GK及GK mRNA表达的影响   总被引:6,自引:0,他引:6  
探讨不同碳水化合物(CHO)水平对翘嘴红NFDA5生长、葡萄糖激酶(GK)及GK基因表达的影响.选用540尾(40.73±0.44)g翘嘴红鲌,随机分成为高CHO组、中CHO组、无CHO组,每组设三个重复,饲养8周,测定鱼体生长、血液指标、GK活性及GK mRNA水平等指标.结果显示,随着CHO添加量的增加,鱼体特定生长率与死亡率呈下降趋势,饵料系数刚好相反.摄食后,血糖先上升后趋于平缓,其中高CHO组相对高,无糖组低;血浆甘油三酯先上升后下降再上升又下降,其中高CHO组相对高,中CHO组最低;无CHO组血浆胆固醇、中CHO组HK活性、高CHO组GDH相对较低,其他各组在投喂后都呈先上升后下降.GK活性总体呈上升趋势,各组在禁食时,检测不到GK活性,饲料CHO含量越高,GK活性也越高,但是GK mRNA的水平与CHO含量并不呈线性关系.血糖、GK活性与GK mRNA的水平之间有一定的相关性,摄食高CHO饲料可诱导GK酶活性及基因的表达,造成持续高血糖,这可能不利于生长.  相似文献   
159.
Quantitative studies of material budgets and resource allocation patterns of emergent plants are needed to fully understand nutrient and carbon cycling in wetlands. Whole-plant translocation patterns of nonstructural carbohydrates and synthesis of structural carbon were documented using two (shallow and deepwater) populations of Typha angustifolia in floodplain habitats of the Arakawa River, Japan. Monthly and bimonthly measurements of the concentrations of total carbon, non-structural carbohydrates, and water-soluble carbohydrates, as well as, estimates of standing stocks of aboveground (AG) and belowground (BG) biomass for both populations from 2002 to 2004 are described here. Annual patterns of carbon gain, rates of carbohydrate translocation between AG and BG organs, and rates of synthesis of structural carbon were estimated. Upward translocation supported all AG production for approximately 30 days. Afterward, the fraction of AG production supported by upward translocation decreased linearly with time, and completely diminished by Day 80 (counted from first day of growth; March 15). At Day 80, material translocation was directed downward and the percentage of downward translocation relative to AG net production increased until Day 170; there was a vigorous increase in downward translocation prior to senescence. In early summer (Day 80–110), more than half of the translocated materials were transformed into structural components, but by Day 125 only 30% was synthesized into total structural carbohydrates. Prior to senescence, there was a greater percentage of nonstructural carbohydrates in the rhizomes. Across the growing season (Day 60–153), the total amount of downward translocation was found to be proportional to AG production and the quantitative evaluation of the carbon budget shed further insight into the translocation process of this rhizomatous aquatic plants. In addition, insights on the differences between shallow and deepwater populations were gained. Especially, the deepwater population supported a higher fraction of vertical rhizomes compared to individuals sampled from the shallow water population. Handling editor: S. M. Thomaz.  相似文献   
160.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号