首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43407篇
  免费   17346篇
  国内免费   18篇
  60771篇
  2024年   3篇
  2023年   21篇
  2022年   27篇
  2021年   469篇
  2020年   2808篇
  2019年   4347篇
  2018年   4610篇
  2017年   4588篇
  2016年   4299篇
  2015年   4162篇
  2014年   4064篇
  2013年   4420篇
  2012年   3829篇
  2011年   3997篇
  2010年   3476篇
  2009年   2326篇
  2008年   2479篇
  2007年   1902篇
  2006年   1896篇
  2005年   1589篇
  2004年   1255篇
  2003年   1368篇
  2002年   1158篇
  2001年   871篇
  2000年   429篇
  1999年   258篇
  1998年   5篇
  1997年   11篇
  1996年   10篇
  1995年   16篇
  1994年   15篇
  1993年   15篇
  1992年   18篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1980年   2篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1973年   2篇
  1972年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
981.
The yearly timing of the life cycle of a parasitoid is a key element of its life‐history strategy. I examine here factors influencing the expression of partial bivoltinism in Tetrastichus julis Walker (Hymenoptera: Eulophidae), a specialist parasitoid introduced to North America to attack its univoltine host, the cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae). The varying tendency was assessed of individuals of this gregarious larval parasitoid to either emerge as adults in the same summer they mature, or to enter diapause to emerge the following year. Parasitized hosts were obtained by rearing cereal leaf beetles collected as mature larvae from grain fields in northern Utah (western USA) throughout the growing seasons in 2013 and 2014. Cocoons spun by these beetles were held to determine patterns over the spring and summer in the tendency of the parasitoid to forgo larval diapause. A high percentage (nearly 90% in 2013) of parasitoid individuals were found to forgo diapause and emerge in the same summer from earliest maturing hosts. This percentage rapidly declined to 20% or less of individuals forgoing diapause and emerging from cocoons as the summer advanced. The percentage of parasitoid individuals forgoing diapause increased significantly at a given time of season (early or late) as the number of conspecifics with which an individual shared a host larva increased. These results may reflect a trade‐off for individual parasitoids in which greater success in finding – and ovipositing in – host larvae the following spring vs. in summer, is countered by reduced survivorship in diapausing over the winter vs. emerging in the same summer in which the parasitoid matures. Expression of partial bivoltinism of T. julis, as affected strongly by both season and within‐host density, results in high rates of parasitism of cereal leaf beetles both early and late in the season.  相似文献   
982.
983.
Hybridization between divergent lineages generates new allelic combinations. One mechanism that can hinder the formation of hybrid populations is mitonuclear incompatibility, that is, dysfunctional interactions between proteins encoded in the nuclear and mitochondrial genomes (mitogenomes) of diverged lineages. Theoretically, selective pressure due to mitonuclear incompatibility can affect genotypes in a hybrid population in which nuclear genomes and mitogenomes from divergent lineages admix. To directly and thoroughly observe this key process, we de novo sequenced the 747‐Mb genome of the coastal goby, Chaenogobius annularis, and investigated its integrative genomic phylogeographics using RNA‐sequencing, RAD‐sequencing, genome resequencing, whole mitogenome sequencing, amplicon sequencing, and small RNA‐sequencing. Chaenogobius annularis populations have been geographically separated into Pacific Ocean (PO) and Sea of Japan (SJ) lineages by past isolation events around the Japanese archipelago. Despite the divergence history and potential mitonuclear incompatibility between these lineages, the mitogenomes of the PO and SJ lineages have coexisted for generations in a hybrid population on the Sanriku Coast. Our analyses revealed accumulation of nonsynonymous substitutions in the PO‐lineage mitogenomes, including two convergent substitutions, as well as signals of mitochondrial lineage‐specific selection on mitochondria‐related nuclear genes. Finally, our data implied that a microRNA gene was involved in resolving mitonuclear incompatibility. Our integrative genomic phylogeographic approach revealed that mitonuclear incompatibility can affect genome evolution in a natural hybrid population.  相似文献   
984.
The red macroalga Pyropia yezoensis is an economically important seaweed widely cultured in Asian countries and is a model organism for molecular biological and commercial research. This species is unique in that it utilizes both phycobilisomes and transmembrane light‐harvesting proteins as its antenna system. Here, one of the genes of P. yezoensis (PyLHCI) was selected for introduction into its genome to overexpress PyLHCI. However, the co‐suppression phenomenon occurred. This is the first documentation of co‐suppression in algae, in which it exhibits a different mechanism from that in higher plants. The transformant (T1) was demonstrated to have higher phycobilisomes and lower LHC binding pigments, resulting in a redder color, higher sensitivity to salt stress, smaller in size, and slower growth rate than the wildtype (WT). The photosynthetic performances of T1 and WT showed similar characteristics; however, P700 reduction was slower in T1. Most importantly, T1 could release a high percentage of carpospores in young blades to switch generation during its life cycle, which was rarely seen in WT. The co‐suppression of PyLHCI revealed its key roles in light harvesting, stress resistance, and generation alternation (generation switch from gametophytes to sporophytes, and reproduction from asexual to sexual).  相似文献   
985.
986.
For autogenic ecosystem engineers, body size is an aspect of individual performance that has direct connections to community structure; yet the complex morphology of these species can make it difficult to draw clear connections between the environment and performance. We combined laboratory experiments and field surveys to test the hypothesis that individual body size was determined by disparate localized physiological responses to environmental conditions across the complex thallus of the intertidal kelp Hedophyllum sessile, a canopy‐forming physical ecosystem engineer. We documented substantial (> 40%) declines in whole‐thallus photosynthetic potential (as Maximum Quantum Yield, MQY) as a consequence of emersion, which were related to greater than 10‐fold increases in intra‐thallus MQY variability (as Coefficient of Variation). In laboratory experiments, desiccation and high light levels during emersion led to lasting impairment of photosynthetic potential and an immediate > 25% reduction in area due to tissue contraction, which was followed by complete loss of structural integrity after three days of submersion. Tissue exposed to desiccation and high light during emersion had higher nitrogen concentrations and lower phlorotannin concentrations than tissue in control treatments (on average 1.36 and 0.1x controls, respectively), suggesting that conditions during emersion have the potential to affect food quality for consumers. Our data indicate that the complex thallus morphology of H. sessile may be critical to this kelp’s ability to persist in the intertidal zone despite the physiological challenges of emersion and encourage a more nuanced view of the concept of “sub‐lethal stress” on the scale of the whole individual.  相似文献   
987.
A major challenge for the development of anticancer vaccines is the induction of a safe and effective immune response, particularly mediated by CD8+ T lymphocytes, in an adjuvant‐free manner. In this respect, we present a simple strategy to improve the specific CD8+ T cell responses using KFE8 nanofibers bearing a Class I (Kb)‐restricted peptide epitope (called E. nanofibers) without the use of adjuvant. We demonstrate that incorporation of Tat, a cell‐penetrating peptide (CPP) of the HIV transactivator protein, into E. nanofibers remarkably enhanced tumor‐specific CD8+ T cell responses. E. nanofibers containing 12.5% Tat peptide (E.Tat12.5 nanofiber) increased antigen cross‐presentation by bone marrow‐derived dendritic cells as compared with E. nanofibers, or E. nanofibers containing 25 or 50% the Tat peptide. Uptake of KFE8.Tat12.5 nanofibers by dendritic cells (DCs) was significantly increased compared with KFE8 nanofiber lacking Tat. Peritoneal and lymph node DCs of mice immunized with E.Tat12.5 nanofibers exhibited increased presentation of the H2kb‐epitope (reminiscent for cross‐presentation) compared with DCs obtained from E. nanofiber vaccinated mice. Tetrameric and intracellular cytokine staining revealed that vaccination with E.Tat12.5 triggered a robust and specific CD8+ T lymphocyte response, which was more pronounced than in mice vaccinated with E. nanofibers alone. Furthermore, E.Tat12.5 nanofibers were more potent than E. nanofiber to induce antitumor immune response and tumor‐infiltrating IFN‐γ CD8 T lymphocyte. In terms of cancer vaccine development, we propose that harnessing the nanofiber‐based vaccine platform with incorporated Tat peptide could present a simple and promising strategy to induce highly effective antitumor immune response.  相似文献   
988.
989.
990.
Toll‐like receptor 4 (TLR4) is a highly conserved protein of innate immunity, responsible for the regulation and maintenance of homeostasis, as well as immune recognition of external and internal ligands. TLR4 is expressed on a variety of cell types throughout the gastrointestinal tract, including on epithelial and immune cell populations. In a healthy state, epithelial cell expression of TLR4 greatly assists in homeostasis by shaping the host microbiome, promoting immunoglobulin A production, and regulating follicle‐associated epithelium permeability. In contrast, immune cell expression of TLR4 in healthy states is primarily centred on the maturation of dendritic cells in response to stimuli, as well as adequately priming the adaptive immune system to fight infection and promote immune memory. Hence, in a healthy state, there is a clear distinction in the site‐specific roles of TLR4 expression. Similarly, recent research has indicated the importance of site‐specific TLR4 expression in inflammation and disease, particularly the impact of epithelial‐specific TLR4 on disease progression. However, the majority of evidence still remains ambiguous for cell‐specific observations, with many studies failing to provide the distinction of epithelial versus immune cell expression of TLR4, preventing specific mechanistic insight and greatly impacting the translation of results. The following review provides a critical overview of the current understanding of site‐specific TLR4 activity and its contribution to intestinal/immune homeostasis and inflammatory diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号