首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   0篇
  国内免费   15篇
  98篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   7篇
  2013年   5篇
  2012年   6篇
  2011年   5篇
  2010年   7篇
  2009年   3篇
  2008年   7篇
  2007年   5篇
  2006年   8篇
  2005年   7篇
  2004年   1篇
  2003年   3篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1989年   3篇
  1987年   1篇
  1986年   2篇
排序方式: 共有98条查询结果,搜索用时 15 毫秒
61.
Ma  Yanmei  Chen  Xiaoyong  Chen  Keyuan  Zeng  Xiancheng  Yang  Shili  Chang  Wei  Tang  Yao  Chen  Xiaoli  Wang  Song  Chen  Ji-Long 《中国病毒学》2020,35(1):43-51
Beak and feather disease virus(BFDV) is an infectious agent responsible for feather degeneration and beak deformation in birds. In March 2017, an epidemic of psittacine beak and feather disease(PBFD) struck a farm in Fuzhou in the Fujian Province of southeast China, resulting in the death of 51 parrots. In this study, the disease was diagnosed and the pathogen was identified by PCR and whole genome sequencing. A distinct BFDV strain was identified and named as the FZ strain.This BFDV strain caused severe disease symptoms and pathological changes characteristic of typical PBFD in parrots, for example, loss of feathers and deformities of the beak and claws, and severe pathological changes in multiple organs of the infected birds. Phylogenetic analysis showed that the FZ strain was more closely related to the strain circulating in New Caledonia than the strains previously reported in China. Nucleotide homology between the FZ strain and other 43 strains of BFDV ranged from 80.0% to 92.0%. Blind passage experiment showed that this strain had limited replication capability in SPF Chicken Embryos and DF-1 Cells. Furthermore, the capsid(Cap) gene of this FZ strain was cloned into the p GEX-4 T-1 expression vector to prepare the polyclonal anti-Cap antibody. Western blotting analysis using the anti-Cap antibody further confirmed that the diseased parrots were infected with BFDV. In this study, a PBFD and its pathogen was identified for the first time in Fujian Province of China, suggesting that future surveillance of BFDV should be performed.  相似文献   
62.
63.
Kang J  Lee MS  Watowich SJ  Gorenstein DG 《FEBS letters》2007,581(13):2497-2502
A phosphorothioate RNA aptamer (thioaptamer) targeting the capsid protein of Venezuelan equine encephalitis virus (VEEV) was isolated by in vitro combinatorial selection. The selected thioaptamer had a strong binding affinity (approximately 7nM) and high specificity for the target protein. For the binding to the protein, the overall tertiary structure of the thioaptamer is required. We introduce two theoretical methods to examine the effect of phosphorothioate modification on the enhancement of binding affinity and one experimental method to examine the nature of the multiple bands of thioaptamer in a native gel.  相似文献   
64.
From the analysis of sizes of approximately 130 small icosahedral viruses we find that there is a typical structural capsid protein, having a mean diameter of 5 nm and a mean thickness of 3 nm, with more than two thirds of the analyzed capsid proteins having thicknesses between 2 nm and 4 nm. To investigate whether, in addition to the fairly conserved geometry, capsid proteins show similarities in the way they interact with one another, we examined the shapes of the capsids in detail. We classified them numerically according to their similarity to sphere and icosahedron and an interpolating set of shapes in between, all of them obtained from the theory of elasticity of shells. In order to make a unique and straightforward connection between an idealized, numerically calculated shape of an elastic shell and a capsid, we devised a special shape fitting procedure, the outcome of which is the idealized elastic shape fitting the capsid best. Using such a procedure we performed statistical analysis of a series of virus shapes and we found similarities between the capsid elastic properties of even very different viruses. As we explain in the paper, there are both structural and functional reasons for the convergence of protein sizes and capsid elastic properties. Our work presents a specific quantitative scheme to estimate relatedness between different proteins based on the details of the (quaternary) shape they form (capsid). As such, it may provide an information complementary to the one obtained from the studies of other types of protein similarity, such as the overall composition of structural elements, topology of the folded protein backbone, and sequence similarity.  相似文献   
65.
New modifications to the scaffold of previously reported HBV capsid assembly effectors such as BAY 41-4109, HAP-12 and GLS4 were explored. The anti-HBV activity in the HepAD38 system, and cytotoxicity profiles of each of the new compounds has been assessed. Among them, five new iodo- and bromo-heteroarylpyrimidines analogs displayed anti-HBV activity in the low micromolar range.  相似文献   
66.
An interaction between the HSV-1 UL25 capsid protein and cellular microtubule-associated protein was found using a yeast two-hybrid screen and β-D-galactosidase activity assays. Immunofluorescence microscopy of the UL25 protein demonstrated its co-localization with cellular microtubule-associated protein in the plasma membrane. Further investigations with deletion mutants suggest that UL25 is likely to have a function in the nucleus.  相似文献   
67.
Mason-Pfizer monkey virus (M-PMV) belongs to the family of betaretroviruses characterized by the assembly of immature particles within cytoplasm of infected cells in contrast to other retroviruses (e.g. HIV, RSV) that assemble their immature particles at a plasma membrane. Simultaneously with or shortly after budding a virus-encoded protease is activated and the Gag polyprotein is cleaved into three major structural proteins: matrix (MA), capsid (CA), and nucleocapsid (NC) protein. Mature retroviral CA proteins consist of two independently folded structural domains: N-terminal domain (NTD) and C-terminal dimerization domain (CTD), separated by a flexible linker. As a first step toward the solution structure elucidation, we present nearly complete backbone and side-chain 1H, 15N and 13C resonance assignment of the M-PMV NTD CA.  相似文献   
68.
An interaction between the HSV-1 UL25 capsid protein and cellular microtubule-associated protein was found using a yeast two-hybrid screen and β-D-galactosidase activity assays. Immunofluorescence microscopy of the UL25 protein demonstrated its co-localization with cellular microtubule-associated protein in the plasma membrane. Further investigations with deletion mutants suggest that UL25 is likely to have a function in the nucleus.  相似文献   
69.
甲型肝炎病毒结构蛋白在大肠杆菌中的表达   总被引:2,自引:0,他引:2  
贾希瑜  丛勉尔 《病毒学报》1989,5(4):312-317
  相似文献   
70.
Viruses can be described as biological objects composed mainly of two parts: a stiff protein shell called a capsid, and a core inside the capsid containing the nucleic acid and liquid. In many double-stranded DNA bacterial viruses (aka phage), the volume ratio between the liquid and the encapsidated DNA is approximately 1:1. Due to the dominant DNA hydration force, water strongly mediates the interaction between the packaged DNA strands. Therefore, water that hydrates the DNA plays an important role in nanoindentation experiments of DNA-filled viral capsids. Nanoindentation measurements allow us to gain further insight into the nature of the hydration and electrostatic interactions between the DNA strands. With this motivation, a continuum-based numerical model for simulating the nanoindentation response of DNA-filled viral capsids is proposed here. The viral capsid is modeled as large- strain isotropic hyper-elastic material, whereas porous elasticity is adopted to capture the mechanical response of the filled viral capsid. The voids inside the viral capsid are assumed to be filled with liquid, which is modeled as a homogenous incompressible fluid. The motion of a fluid flowing through the porous medium upon capsid indentation is modeled using Darcy’s law, describing the flow of fluid through a porous medium. The nanoindentation response is simulated using three-dimensional finite element analysis and the simulations are performed using the finite element code Abaqus. Force-indentation curves for empty, partially and completely DNA-filled capsids are directly compared to the experimental data for bacteriophage λ. Material parameters such as Young’s modulus, shear modulus, and bulk modulus are determined by comparing computed force-indentation curves to the data from the atomic force microscopy (AFM) experiments. Predictions are made for pressure distribution inside the capsid, as well as the fluid volume ratio variation during the indentation test.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号