首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1849篇
  免费   117篇
  国内免费   74篇
  2024年   5篇
  2023年   51篇
  2022年   79篇
  2021年   94篇
  2020年   57篇
  2019年   61篇
  2018年   66篇
  2017年   59篇
  2016年   68篇
  2015年   87篇
  2014年   96篇
  2013年   108篇
  2012年   70篇
  2011年   62篇
  2010年   87篇
  2009年   73篇
  2008年   119篇
  2007年   100篇
  2006年   80篇
  2005年   60篇
  2004年   57篇
  2003年   57篇
  2002年   48篇
  2001年   32篇
  2000年   25篇
  1999年   21篇
  1998年   17篇
  1997年   17篇
  1996年   21篇
  1995年   22篇
  1994年   27篇
  1993年   21篇
  1992年   14篇
  1991年   21篇
  1990年   18篇
  1989年   14篇
  1988年   15篇
  1987年   12篇
  1986年   13篇
  1985年   18篇
  1984年   12篇
  1983年   20篇
  1982年   16篇
  1981年   7篇
  1980年   6篇
  1979年   1篇
  1978年   4篇
  1976年   2篇
排序方式: 共有2040条查询结果,搜索用时 31 毫秒
101.
102.
5-Methylthioribose 1-phosphate isomerase (M1Pi) is a crucial enzyme involved in the universally conserved methionine salvage pathway (MSP) where it is known to catalyze the conversion of 5-methylthioribose 1-phosphate (MTR-1-P) to 5-methylthioribulose 1-phosphate (MTRu-1-P) via a mechanism which remains unspecified till date. Furthermore, although M1Pi has a discrete function, it surprisingly shares high structural similarity with two functionally non-related proteins such as ribose-1,5-bisphosphate isomerase (R15Pi) and the regulatory subunits of eukaryotic translation initiation factor 2B (eIF2B). To identify the distinct structural features that lead to divergent functional obligations of M1Pi as well as to understand the mechanism of enzyme catalysis, the crystal structure of M1Pi from a hyperthermophilic archaeon Pyrococcus horikoshii OT3 was determined. A meticulous structural investigation of the dimeric M1Pi revealed the presence of an N-terminal extension and a hydrophobic patch absent in R15Pi and the regulatory α-subunit of eIF2B. Furthermore, unlike R15Pi in which a kink formation is observed in one of the helices, the domain movement of M1Pi is distinguished by a forward shift in a loop covering the active-site pocket. All these structural attributes contribute towards a hydrophobic microenvironment in the vicinity of the active site of the enzyme making it favorable for the reaction mechanism to commence. Thus, a hydrophobic active-site microenvironment in addition to the availability of optimal amino-acid residues surrounding the catalytic residues in M1Pi led us to propose its probable reaction mechanism via a cis-phosphoenolate intermediate formation.  相似文献   
103.
Muscles are formed by fusion of individual postmitotic myoblasts to form multinucleated syncytial myotubes. The process requires a well-coordinated transition from proliferation, through migratory alignment and cycle exit, to breakdown of apposed membranes. Connexin43 protein and cell-cycle inhibitor levels are correlated, and gap junction blockers can delay muscle regeneration, so a coordinating role for gap junctions has been proposed. Here, wild-type and dominant-negative connexin43 variants (wtCx43, dnCx43) were introduced into rat myoblasts in primary culture through pIRES-eGFP constructs that made transfected cells fluoresce. GFP-positive cells and vitally-stained nuclei were counted on successive days to reveal differences in proliferation, and myotubes were counted to reveal differences in fusion. Individual transfected cells were injected with Cascade Blue, which permeates gap junctions, mixed with FITC-dextran, which requires cytoplasmic continuity to enter neighbouring cells. Myoblasts transfected with wtCx43 showed more gap-junctional coupling than GFP-only controls, began fusion sooner as judged by the incidence of cytoplasmic coupling, and formed more myotubes. Myoblasts transfected with dnCx43 remained proliferative for longer than either GFP-only or wtCx43 myoblasts, showed less coupling, and underwent little fusion into myotubes. These results highlight the critical role of gap-junctional coupling in myotube formation.  相似文献   
104.
The eukaryotic translation termination factor eRF3 stimulates release of nascent polypeptides from the ribosome in a GTP-dependent manner. In most eukaryotes studied, eRF3 consists of an essential, conserved C-terminal domain and a nonessential, nonconserved N-terminal extension. However, in some species, this extension is required for efficient termination. Our data show that the N-terminal extension of Saccharomyces cerevisiae eRF3 also participates in regulation of termination efficiency, but acts as a negative factor, increasing nonsense suppression efficiency in sup35 mutants containing amino acid substitutions in the C-terminal domain of the protein.  相似文献   
105.
白质消融性白质脑病(leukoencephalopathy with vanishing white matter,VWM)是一种常染色体隐性遗传性脑白质病,其致病基因EIF2B 1~5分别编码真核细胞蛋白质翻译起始因子2B(eukaryotic initiation factor 2B,eIF2B)的5个亚基α~ε,其中任一编码基因突变均可引起发病。起病多见于婴幼儿及儿童期,临床表型差异大,典型表现为进行性运动功能退行,可伴共济失调和癫痫。应激(发热、外伤等)可导致发作性加重。影像学显示大脑白质进行性液化。尸解神经病理学特征主要表现为广泛性白质稀疏和囊性变性,无神经胶质细胞反应性增生,星形胶质细胞形态异常,过表达祖细胞标志物巢蛋白(Nestin)和胶质纤维酸性蛋白δ(GFAPδ),少突前体细胞数量增加和成熟少突胶质细胞减少、泡沫化且凋亡增加。VWM致病基因EIF2B 1~5是管家基因,但多数患者通常仅脑白质受累。少数胎儿期及婴儿早期发病的患者可出现多系统受累,成年女性患者可有卵巢功能障碍。目前认为,星形胶质细胞在其致病机制中起着核心作用,病理性星形胶质细胞继发性引起少突胶质细胞成熟障碍和髓鞘形成异常,进而导致脑白质病变。其他疾病机制包括内质网应激后未折叠蛋白反应(UPR)过度激活、线粒体功能障碍、自噬抑制等,尚不完全明确。  相似文献   
106.
107.
108.
109.
In bacteria stop codons are recognized by one of two class I release factors (RF1) recognizing TAG, RF2 recognizing TGA, and TAA being recognized by both. Variation across bacteria in the relative abundance of RF1 and RF2 is thus hypothesized to select for different TGA/TAG usage. This has been supported by correlations between TAG:TGA ratios and RF1:RF2 ratios across multiple bacterial species, potentially also explaining why TAG usage is approximately constant despite extensive variation in GC content. It is, however, possible that stop codon trends are determined by other forces and that RF ratios adapt to stop codon usage, rather than vice versa. Here, we determine which direction of the causal arrow is the more parsimonious. Our results support the notion that RF1/RF2 ratios become adapted to stop codon usage as the same trends, notably the anomalous TAG behavior, are seen in contexts where RF1:RF2 ratios cannot be, or are unlikely to be, causative, that is, at 3′untranslated sites never used for translation termination, in intragenomic analyses, and across archaeal species (that possess only one RF1). We conclude that specifics of RF biology are unlikely to fully explain TGA/TAG relative usage. We discuss why the causal relationships for the evolution of synonymous stop codon usage might be different from those affecting synonymous sense codon usage, noting that transitions between TGA and TAG require two-point mutations one of which is likely to be deleterious.  相似文献   
110.
Co‐evolution between hosts’ and parasites’ genomes shapes diverse pathways of acquired immunity based on silencing small (s)RNAs. In plants, sRNAs cause heterochromatinization, sequence degeneration, and, ultimately, loss of autonomy of most transposable elements (TEs). Recognition of newly invasive plant TEs, by contrast, involves an innate antiviral‐like silencing response. To investigate this response’s activation, we studied the single‐copy element EVADÉ (EVD), one of few representatives of the large Ty1/Copia family able to proliferate in Arabidopsis when epigenetically reactivated. In Ty1/Copia elements, a short subgenomic mRNA (shGAG) provides the necessary excess of structural GAG protein over the catalytic components encoded by the full‐length genomic flGAG‐POL. We show here that the predominant cytosolic distribution of shGAG strongly favors its translation over mostly nuclear flGAG‐POL. During this process, an unusually intense ribosomal stalling event coincides with mRNA breakage yielding unconventional 5’OH RNA fragments that evade RNA quality control. The starting point of sRNA production by RNA‐DEPENDENT‐RNA‐POLYMERASE‐6 (RDR6), exclusively on shGAG, occurs precisely at this breakage point. This hitherto‐unrecognized “translation‐dependent silencing” (TdS) is independent of codon usage or GC content and is not observed on TE remnants populating the Arabidopsis genome, consistent with their poor association, if any, with polysomes. We propose that TdS forms a primal defense against EVD de novo invasions that underlies its associated sRNA pattern.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号