首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5920篇
  免费   403篇
  国内免费   552篇
  2024年   16篇
  2023年   54篇
  2022年   62篇
  2021年   90篇
  2020年   154篇
  2019年   140篇
  2018年   112篇
  2017年   149篇
  2016年   143篇
  2015年   171篇
  2014年   192篇
  2013年   230篇
  2012年   167篇
  2011年   189篇
  2010年   151篇
  2009年   221篇
  2008年   258篇
  2007年   272篇
  2006年   233篇
  2005年   230篇
  2004年   235篇
  2003年   251篇
  2002年   244篇
  2001年   218篇
  2000年   184篇
  1999年   179篇
  1998年   188篇
  1997年   172篇
  1996年   187篇
  1995年   161篇
  1994年   159篇
  1993年   147篇
  1992年   156篇
  1991年   125篇
  1990年   144篇
  1989年   114篇
  1988年   106篇
  1987年   105篇
  1986年   90篇
  1985年   86篇
  1984年   71篇
  1983年   65篇
  1982年   79篇
  1981年   54篇
  1980年   43篇
  1979年   30篇
  1978年   14篇
  1977年   9篇
  1976年   12篇
  1975年   10篇
排序方式: 共有6875条查询结果,搜索用时 421 毫秒
31.
One-year old loblolly pine ( Pinus taeda L.) seedlings were grown in an unshaded greenhouse for 7 months under 4 levels of ultraviolet-B (UV-B) radiation simulating stratospheric ozone reductions of 16, 25 and 40% and included a control with no UV-B radiation. Periodic measurements were made of growth and gas exchange characteristics and needle chlorophyll and UV-B-absorbing-compound concentrations. The effectiveness of UV-B radiation on seedling growth and physiology varied with the UV-B irradiance level. Seedlings receiving the lowest supplemental UV-B irradiance showed reductions in growth and photosynthetic capacity after only 1 month of irradiation. These reductions persisted and resulted in lower biomass production, while no increases in UV-B-absorbing compounds in needles were observed. Seedlings receiving UV-B radiation which simulated a 25% stratospheric ozone reduction showed an increase in UV-B-absorbing-compound concentrations after 6 months, which paralleled a recovery in photosynthesis and growth after an initial decrease in these characteristics. The seedlings grown at the highest UV-B irradiance (40% stratospheric ozone reduction) showed a more rapid increase in the concentration of UV-B-absorbing compounds and no effects of UV-B radiation on growth or photosynthetic capacity until after 4 months at this irradiance. Changes in photosynthetic capacity were probably the result of direct effects on light-dependent processes, since no effects were observed on either needle chlorophyll concentrations or stomatal conductance. Further studies are necessary to determine whether these responses persist and accumulate over subsequent years.  相似文献   
32.
Cucumber ( Cucumis sativus L. cv. Natsusairaku 3) seedlings were grown in a growth cabinet under UV-B (290–320 nm) irradiation (equivalent to the UV-B radiation normally incident at Tokyo, 36°N latitude, during clear sky conditions in mid-april on a weighted daily fluence basis) and a UV-B-free control condition. UV-B irradiation inhibited the growth of the cotyledons, i.e. the increase in area, and increase in fresh and dry weights of the cotyledons. The greatest inhibition rate was observed in the increase in area, causing a significant increase in specific leaf weight (the ratio of weight to area). UV-B irradiation had no significant effect on DNA and RNA contents in the cotyledons, but decreased protein content slightly. In contrast, the irradiation reduced the amounts of organic acids and soluble sugars, indicating that primary carbon metabolism was very sensitive to UV-B radiation. UV-B irradiation lowered the photosynthetic activity in the cotyledons without any effect on chlorophyll content and respiratory activity. These results indicate that UV-B radiation at the ambient level may act as a physiological stress in some UV-sensitive plants.  相似文献   
33.
The gas exchange properties of whole plant canopies are an integral part of crop productivity and have attracted much attention in recent years. However, insufficient information exists on the coordination of transpiration and CO2 uptake for individual leaves during the growing season. Single-leaf determinations of net photosynthesis (Pn), transpiration (E) and water use efficiency (WUE) for field-grown cotton (Gossypium hirsutum L.) leaves were recorded during a 2-year field study. Measurements were made at 3 to 4 day intervals on the main-stem and first three sympodial leaves at main-stem node 10 from their unfolding through senescence. Results indicated that all gas exchange parameters changed with individual main-stem and sympodial leaf age. Values of Pn, E and WUE followed a rise and fall pattern with maximum rates achieved at a leaf age of 18 to 20 days. While no significant position effects were observed for Pn, main-stem and sympodial leaves did differ in E and WUE particularly as leaves aged beyond 40 days. For a given leaf age, the main-stem leaf had a significantly lower WUE than the three sympodial leaves. WUE's for the main-stem and three sympodial leaves between the ages of 41 to 50 days were 0.85, 1.30, 1.36 and 1.95 μmol CO2 mmol−1 H2O, respectively. The mechanisms which mediated leaf positional differences for WUE were not strictly related to changes in stomatal conductance (gs·H2O) since decreases in gs·H2O with leaf age were similar for the four leaves. However, significantly different radiant environments with distance along the fruiting branch did indicate the possible involvement of mutual leaf shading in determining WUE. The significance of these findings are presented in relation to light competition within the plant canopy during development.  相似文献   
34.
Alan Scaife 《Plant and Soil》1989,114(1):139-141
A simple simulation model is described to account for the rates at which plants take up nitrate and reduce it to protein. It is based on the pump and leak principle, with the pump working at a constant rate per unit sap volume provided that there is an adequate concentration of nitrate at the root surface. The rate of leakage is assumed to be proportional to the concentration difference between the inside and the outside of the plant. Nitrogen is removed from the plant nitrate pool (the buffer) at a constant fraction of the photosynthesis rate. When applied to data for the diurnal variation in nitrate uptake by ryegrass, the model predicts an uptake pattern similar to that actually observed, with a time lag of about 5 hours between photosynthesis and uptake.  相似文献   
35.
Expression of C4-like photosynthesis in several species of Flaveria   总被引:4,自引:2,他引:2  
Abstract Photosynthetic metabolism was investigated in leaves of five species of Flaveria (Asteraceac), all previously considered to be C4 plants. Leaves were exposed to 14CO2 for different intervals up to 16s. Extrapolation of 14C-product curves to zero time indicated that only F. trinervia and F.bidentis assimilated atmospheric CO2 exclusively through phosphoenolpyruvate carboxylase. The proportion of direct fixation of 14CO2 by ribulose-I, 5-bisphosphate carboxylase/oxygenase (Rubisco) ranged from 5 to 10% in leaves of F. australasica. F. palmeri and F. vaginata. Protoplasts of leaf mesophyll and bundle sheath cells were utilized to examine the intercellular compartmentation of principal photosynthetic enzymes. Leaves of F. australasica, F. palmeri and F. vaginata contained 5 to 7% of the leaf's Rubisco activity in the mesophyll cells, while leaves of F. trinervia and F. bidentis contained at most 0.2 to 0.8% of such activity in their mesophyll cells. Thus, F. trinervia and F. bidentis have the complete C4 syndrome, while F. australasica, F. palmeri and F. vaginata are less advanced, C4-like species.  相似文献   
36.
We have measured the extent of flash-induced electron transfer from the bacteriochlorophyll dimer, P, to the bacteriopheophytin in the M-subunit, HM, in reaction centers of Rhodopseudomonas viridis. This has been done by measuring the transient states produced by excitation of reaction centers trapped in the PHL HM state at 90 K. Under these conditions the normal forward electron transfer to the bacteriopheophytin in the L-subunit, HL, is blocked and the yield of transient P+HM can be estimated with respect to the lifetime of P*. Under these conditions flash induced absorbance decreases of the bacteriochlorophyll dimer 990 nm band suggest that a transient P+ state is formed with a quantum yield of 0.09±0.06 compared to that formed during normal photochemistry. These transient measurements provide an upper limited on the yield of a transient P+ HM state. An estimate of 0.09 as the yield of the P+ HM state is consistent with all current observations. This estimate and the lifetime of P* suggest that the electron transfer rate from P* to HM, kM, is about 5 × 109 sec–1 (M = 200ps). These measurements suggest that the a branching ratio kL/kM is on the order of 200. The large value of the branching ratio is remarkable in view of the structural symmetry of the reaction center. This measurement should be useful for electron transfer calculations based upon the reaction center structure.  相似文献   
37.
38.
We report the successful transformation, via Agrobacterium tumefaciens infection, and regeneration of two species of the genus Flaveria: F. brownii and F. palmeri. We document the expression of a C3 plant gene, an abundantly expressed ribulose 1,5-bisphosphate carboxylase/oxygenase small subunit gene isolated from petunia, in these C4 plants. The organ-specific expression of this petunia gene in Flaveria brownii is qualitatively identical to its endogenous pattern of expression.  相似文献   
39.
麦田冠层气孔导度的分层研究   总被引:2,自引:0,他引:2  
小麦灌浆期和乳熟期冠层各层叶片上、下表面的气孔导度之间呈正相关关系;冠层不同层的叶片气孔导度从早到傍晚有平行变化的趋势,数值上存在较大的差异,一般从冠层上到下递减。经分析,这主要与冠层叶片接受的光强自上而下递减有关,且这时所对应的叶片水势自冠层上到下递增的幅度大。测算结果表明,冠层气孔导度白天亦呈明显的日变化,灌浆期的值大于乳熟期的值。  相似文献   
40.
The photosynthetic behaviour ofDunaliella viridis has been studied under a combination of three variables: irradiance (0–900 mol m–2 s–1), temperature (15, 23, 31, 38, 42 °C) and nitrogen concentration (0.05, 0.5, 1.5, 5, 10 mM NO 3 - ) at a salinity of 2 M NaCl.The highest rates of photosynthesis have been found at 31 °C and a nitrate concentration of 10 mM. There exists a synergistic effect between temperature and nitrogen availability on the photosynthesis ofD. viridis; under nitrogen deficiency oxygen evolution is low, even null at high temperature. The interaction between these two variables of control occurs in a multiplicative way. There is also a general increase in photosynthetic pigments following the increase in nitrogen concentration in the culture medium. The normalization of net photosynthesis data in relation to chlorophylla shows that nitrogen concentration makes an indirect control of the photosynthetic rate ofD. viridis through the variation of pigment concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号