首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14746篇
  免费   1398篇
  国内免费   954篇
  2024年   46篇
  2023年   356篇
  2022年   367篇
  2021年   507篇
  2020年   608篇
  2019年   784篇
  2018年   745篇
  2017年   641篇
  2016年   734篇
  2015年   653篇
  2014年   722篇
  2013年   1656篇
  2012年   608篇
  2011年   643篇
  2010年   568篇
  2009年   614篇
  2008年   708篇
  2007年   691篇
  2006年   659篇
  2005年   592篇
  2004年   574篇
  2003年   528篇
  2002年   486篇
  2001年   333篇
  2000年   323篇
  1999年   253篇
  1998年   258篇
  1997年   230篇
  1996年   183篇
  1995年   152篇
  1994年   127篇
  1993年   107篇
  1992年   108篇
  1991年   61篇
  1990年   51篇
  1989年   42篇
  1988年   30篇
  1987年   34篇
  1986年   15篇
  1985年   29篇
  1984年   56篇
  1983年   36篇
  1982年   51篇
  1981年   38篇
  1980年   23篇
  1979年   14篇
  1978年   16篇
  1977年   14篇
  1975年   7篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 272 毫秒
741.
As technologically important materials for solid‐state batteries, Li super‐ionic conductors are a class of materials exhibiting exceptionally high ionic conductivity at room temperature. These materials have unique crystal structural frameworks hosting a highly conductive Li sublattice. However, it is not understood why certain crystal structures of the super‐ionic conductors lead to high conductivity in the Li sublattice. In this study, using topological analysis and ab initio molecular dynamics simulations, the crystal structures of all Li‐conducting oxides and sulfides are studied systematically and the key features pertaining to fast‐ion conduction are quantified. In particular, a unique feature of enlarged Li sites caused by large local spaces in the crystal structural framework is identified, promoting fast conduction in the Li‐ion sublattice. Based on these quantified features, the high‐throughput screening identifies many new structures as fast Li‐ion conductors, which are further confirmed by ab initio molecular dynamics simulations. This study provides new insights and a systematic quantitative understanding of the crystal structural frameworks of fast ion‐conductor materials and motivates future experimental and computational studies on new fast‐ion conductors.  相似文献   
742.
Developing new ABX3‐type perovskites is very important for expanding the family of perovskites and obtaining excellent light absorbing material. One strategy is replacing A site atoms with super‐alkali atoms for the perovskites, but super‐alkali perovskites with stable dynamics performance and high efficiency have not been found until now. Herein, massive super‐alkalis, such as Li3O, Li2F, H5O2, and so on, are introduced into the cubic CH3NH3PbI3 perovskites, and the perovskites with these super‐alkalis are systematically studied by using ab initio molecular dynamics simulation and density functional theory based first principles calculations. Calculated results indicate that the perovskites with the super‐alkalis including metal atoms show unstable dynamics performance under normal temperature and pressure. On the contrary, the first obtainable super‐alkali perovskites of cubic H5O2MBr3 (M = Ge, Sn, Pb) and H5O2PbI3 show stable dynamics performance. They also show suitable tolerance factors, negative formation energies, tunable direct band gaps, and small effective hole and electron masses. Moreover, the calculated power conversion efficiencies of 23.17% and 22.83% are obtained for the single‐junction solar cells based on the cubic H5O2SnBr3 and H5O2PbBr3 perovskites, respectively.  相似文献   
743.
Mites are one of the serious pests of turfgrass. Our survey of turfgrass fields from 2013 to 2015 in Korea showed that the occurrence of leaf chlorotic symptom has gradually extended to at least 60% of the examined golf courses. We identified the zoysiae mite Aceria zoysiae in most damaged zoysiagrasses. Artificial infestation of A. zoysiae into zoysiagrasses in pots resulted in symptoms of chlorosis and marginal rolling of the leaves within 3 weeks. We firstly determined the nucleotide sequence of mitochondrial cytochrome c oxidase subunit I (COI) and internal transcribed spacer 2 (ITS2) of the nuclear ribosomal DNA region of A. zoysiae. The variations in COI and ITS2 between A. zoysiae and other species of the genus were 20.9%–43.0% and 7.5%–67.3%, respectively, suggesting significant genetic divergence within the genus. Our study provides valuable information for the rapid diagnosis and infestation monitoring of A. zoysiae in turfgrass fields.  相似文献   
744.
Microbiota play a central role in the functioning of multicellular life, yet understanding their inheritance during host evolutionary history remains an important challenge. Symbiotic microorganisms are either acquired from the environment during the life of the host (i.e. environmental acquisition), transmitted across generations with a faithful association with their hosts (i.e. strict vertical transmission), or transmitted with occasional host switches (i.e. vertical transmission with horizontal switches). These different modes of inheritance affect microbes’ diversification, which at the two extremes can be independent from that of their associated host or follow host diversification. The few existing quantitative tools for investigating the inheritance of symbiotic organisms rely on cophylogenetic approaches, which require knowledge of both host and symbiont phylogenies, and are therefore often not well adapted to DNA metabarcoding microbial data. Here, we develop a model‐based framework for identifying vertically transmitted microbial taxa. We consider a model for the evolution of microbial sequences on a fixed host phylogeny that includes vertical transmission and horizontal host switches. This model allows estimating the number of host switches and testing for strict vertical transmission and independent evolution. We test our approach using simulations. Finally, we illustrate our framework on gut microbiota high‐throughput sequencing data of the family Hominidae and identify several microbial taxonomic units, including fibrolytic bacteria involved in carbohydrate digestion, that tend to be vertically transmitted.  相似文献   
745.
Marine mammals are important models for studying convergent evolution and aquatic adaption, and thus reference genomes of marine mammals can provide evolutionary insights. Here, we present the first chromosome‐level marine mammal genome assembly based on the data generated by the BGISEQ‐500 platform, for a stranded female sperm whale (Physeter macrocephalus). Using this reference genome, we performed chromosome evolution analysis of the sperm whale, including constructing ancestral chromosomes, identifying chromosome rearrangement events and comparing with cattle chromosomes, which provides a resource for exploring marine mammal adaptation and speciation. We detected a high proportion of long interspersed nuclear elements and expanded gene families, and contraction of major histocompatibility complex region genes which were specific to sperm whale. Using comparisons with sheep and cattle, we analysed positively selected genes to identify gene pathways that may be related to adaptation to the marine environment. Further, we identified possible convergent evolution in aquatic mammals by testing for positively selected genes across three orders of marine mammals. In addition, we used publicly available resequencing data to confirm a rapid decline in global population size in the Pliocene to Pleistocene transition. This study sheds light on the chromosome evolution and genetic mechanisms underpinning sperm whale adaptations, providing valuable resources for future comparative genomics.  相似文献   
746.
747.
748.
Get3 in yeast or TRC40 in mammals is an ATPase that, in eukaryotes, is a central element of the GET or TRC pathway involved in the targeting of tail‐anchored proteins. Get3 has also been shown to possess chaperone holdase activity. A bioinformatic assessment was performed across all domains of life on functionally important regions of Get3 including the TRC40‐insert and the hydrophobic groove essential for tail‐anchored protein binding. We find that such a hydrophobic groove is much more common in bacterial Get3 homologs than previously appreciated based on a directed comparison of bacterial ArsA and yeast Get3. Furthermore, our analysis shows that the region containing the TRC40‐insert varies in length and methionine content to an unexpected extent within eukaryotes and also between different phylogenetic groups. In fact, since the TRC40‐insert is present in all domains of life, we suggest that its presence does not automatically predict a tail‐anchored protein targeting function. This opens up a new perspective on the function of organellar Get3 homologs in plants which feature the TRC40‐insert but have not been demonstrated to function in tail‐anchored protein targeting. Our analysis also highlights a large diversity of the ways Get3 homologs dimerize. Thus, based on the structural features of Get3 homologs, these proteins may have an unexplored functional diversity in all domains of life.   相似文献   
749.
Suppressor of IKKepsilon (SIKE) is a 207 residue protein that is implicated in the TLR3‐TANK‐binding kinase‐1‐mediated response to viral infection. SIKE's function in this pathway is unknown, but SIKE forms interactions with two distinct cytoskeletal proteins, α‐actinin and tubulin, and SIKE knockout reduces cell migration. As structure informs function and in the absence of solved structural homologs, our studies were directed toward creating a structural model of SIKE through biochemical and biophysical characterization to probe and interrogate SIKE function. Circular dichroism revealed a primarily (73%) helical structure of minimal stability (<Tm > =32°C) but reversibly denatured. Limited proteolysis (LP) and chemical modification identified the N‐terminal 2/3 of the protein as dynamic and accessible, whereas size exclusion chromatography (SEC) confirmed three homo‐oligomeric species. SEC coupled to chemical crosslinking characterized the primary species as dimeric, a secondary hexameric species, and a higher order aggregate/polymer. Fluorescence polarization using intrinsic tryptophan fluorescence contextualized the anisotropy value for the SIKE dimer (molecular weight 51.8 kDa) among proteins of known structure, bovine serum albumin (BSA; 66 kDa), and glutamate dehydrogenase (GDH; 332 kDa). Radii of gyration for BSA and GDH provided exclusionary values for SIKE tertiary and dimeric quaternary models that otherwise conformed to secondary structure, LP, and modification data. Dimeric quaternary models were further culled using acrylamide quenching data of SIKE's single tryptophan that showed a single, protected environment. The low cooperativity of folding and regions of dynamic and potentially disordered structure advance the hypothesis that SIKE forms a conformational ensemble of native states that accommodate SIKE's interactions with multiple, distinct protein‐binding partners.  相似文献   
750.
Bacteria that engage in long‐standing associations with particular hosts are expected to evolve host‐specific adaptations that limit their capacity to thrive in other environments. Consistent with this, many gut symbionts seem to have a limited host range, based on community profiling and phylogenomics. However, few studies have experimentally investigated host specialization of gut symbionts and the underlying mechanisms have largely remained elusive. Here, we studied host specialization of a dominant gut symbiont of social bees, Lactobacillus Firm5. We show that Firm5 strains isolated from honey bees and bumble bees separate into deep‐branching host‐specific phylogenetic lineages. Despite their divergent evolution, colonization experiments show that bumble bee strains are capable of colonizing the honey bee gut. However, they were less successful than honey bee strains, and competition with honey bee strains completely abolished their colonization. In contrast, honey bee strains of divergent phylogenetic lineages were able to coexist within individual bees. This suggests that both host selection and interbacterial competition play important roles in host specialization. Using comparative genomics of 27 Firm5 isolates, we found that the genomes of honey bee strains harbour more carbohydrate‐related functions than bumble bee strains, possibly providing a competitive advantage in the honey bee gut. Remarkably, most of the genes encoding carbohydrate‐related functions were not conserved among the honey bee strains, which suggests that honey bees can support a metabolically more diverse community of Firm5 strains than bumble bees. These findings advance our understanding of the genomic changes underlying host specialization.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号