首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1923篇
  免费   75篇
  国内免费   166篇
  2023年   9篇
  2022年   27篇
  2021年   43篇
  2020年   50篇
  2019年   41篇
  2018年   37篇
  2017年   32篇
  2016年   44篇
  2015年   34篇
  2014年   77篇
  2013年   146篇
  2012年   70篇
  2011年   95篇
  2010年   53篇
  2009年   153篇
  2008年   115篇
  2007年   105篇
  2006年   109篇
  2005年   82篇
  2004年   76篇
  2003年   64篇
  2002年   60篇
  2001年   58篇
  2000年   54篇
  1999年   58篇
  1998年   54篇
  1997年   43篇
  1996年   34篇
  1995年   45篇
  1994年   35篇
  1993年   35篇
  1992年   36篇
  1991年   36篇
  1990年   24篇
  1989年   27篇
  1988年   18篇
  1987年   18篇
  1986年   15篇
  1985年   5篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1976年   6篇
  1975年   1篇
  1974年   1篇
排序方式: 共有2164条查询结果,搜索用时 15 毫秒
991.
The objective of this study was to prepare cross-linked β-cyclodextrin polymers for immobilization of Candida rugosa lipase. The structures of synthesized macrocyclic compounds were characterized by Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA) and scanning electron microscope (SEM) techniques. Properties of the immobilized systems were assessed and their performance on hydrolytic reaction were evaluated and compared with the free enzyme. The influence of activation agents (glutaraldehyde (GA) and hexamethylene diisocyanate (HMDI)) and thermal and pH stabilities of the biocatalyst was evaluated. After the optimization of immobilization process, the physical and chemical characterization of immobilized lipase was performed. Obtained data showed that the immobilized enzyme seemed better and offered some advantages in comparison with free enzyme. It can be observed that the free lipase loses its initial activity within around 80 min at 60 °C, while the immobilized lipases retain their initial activities of about 56% by HMDI and 82% by GA after 120 min of heat treatment at 60 °C.Results showed that the specific activity of the immobilized lipase with glutaraldehyde was 62.75 U/mg protein, which is 28.13 times higher than that of the immobilized lipase with HMDI.  相似文献   
992.
Molecular modeling was used to clarify the mechanism of the selectivity of Candida antarctica lipase B and Candida rugosa lipase towards cis9, trans11 (c9, t11-) and trans10, cis12 (t10, c12-) conjugated linoleic acid. Hydrogen bonds network, substrate conformation, binding affinity and water molecules in the binding site were analyzed. Substrate conformation and binding affinity were not correlated with the experimental results of the substrate selectivity. On the contrary, better enzyme preference towards a substrate was correlated with two stronger hydrogen bonds (His-NH-Oa and His-NH-Ser-Oγ) and less water molecules between the substrate the binding pocket. Possible explanation of these was discussed.  相似文献   
993.
Plant defensins are antimicrobial peptides that exhibit mainly antifungal activity against a broad range of plant fungal pathogens. However, their actions against Candida albicans have not been extensively studied. The mRNA for γ-thionin, a defensin from Capsicum chinense, has been expressed in bovine endothelial cells. The conditioned medium of these cells showed antifungal activity on germ tube formation (60–70% of inhibition) and on the viability of C. albicans (70–80% of inhibition). Additionally, C. albicans was not able to penetrate transfected cells. Conditioned medium from these cells also inhibited the viability (80%) of the human tumor cell line, HeLa.  相似文献   
994.
Ko BS  Rhee CH  Kim JH 《Biotechnology letters》2006,28(15):1159-1162
The effects of glycerol and the oxygen transfer rate on the xylitol production rate by a xylitol dehydrogenase gene (XYL2)-disrupted mutant of Candida tropicalis were investigated. The mutant produced xylitol near the almost yield of 100% from d-xylose using glycerol as a co-substrate for cell growth and NADPH regeneration: 50 g d-xylose l−1 was completely converted into xylitol when at least 20 g glycerol l−1 was used as a co-substrate. The xylitol production rate increased with the O2 transfer rate until saturation and it was not necessary to control the dissolved O2 tension precisely. Under the optimum conditions, the volumetric productivity and xylitol yield were 3.2 g l−1 h−1 and 97% (w/w), respectively.  相似文献   
995.
Traditionally, living organisms have often been classified into two main categories: unicellular and multicellular. In recent years, however, the boundary between these two groups has become less strict and clear than was previously presumed. Studies on the communities formed by unicellular microorganisms have revealed that various properties and processes so far mainly associated with metazoa are also important for the proper development, survival and behaviour of muticellular microbial populations. In this review, we present various examples of this, using a yeast colony as representative of a structured organized microbial community. Among other things, we will show how the differentiation of yeast cells within a colony can be important for the long-term survival of a community under conditions of nutrient shortage, how colony development and physiology can be influenced by the environment, and how a group of colonies can synchronize their developmental changes. In the last section, we introduce examples of molecular mechanisms that can participate in some aspects of the behaviour of yeast populations.  相似文献   
996.
Yeasts are often successful in metal-polluted environments; therefore, the ability of biofilm and planktonic cell Candida tropicalis to endure metal toxicity was investigated. Fifteen water-soluble metal ions, chosen to represent groups 6A to 6B of the periodic table, were tested against this organism. With in vitro exposures as long as 24 h, biofilms were up to 65 times more tolerant to killing by metals than corresponding planktonic cultures. Of the most toxic heavy metals tested, only very high concentrations of Hg2+, CrO4 (2-) or Cu2+ killed surface-adherent Candida. Metal-chelator precipitates could be formed in biofilms following exposure to the heavy metals Cu2+ and Ni2+. This suggests that Candida biofilms may adsorb metal cations from their surroundings and that sequestration in the extracellular matrix may contribute to resistance. We concluded that biofilm formation may be a strategy for metal resistance and/or tolerance in yeasts.  相似文献   
997.
998.
Mao X  Cao F  Nie X  Liu H  Chen J 《FEBS letters》2006,580(11):2615-2622
The ability of dimorphic transition between yeast and hyphal forms in Candida albicans is one of the vital determinants for its pathogenicity and virulence. We isolated C. albicans SWI1 as a suppressor of the invasive growth defect in a Saccharomyces cerevisiae mutant. Expression of C. albicans SWI1 in S. cerevisiae partially complemented the growth defect of a swi1 mutant in the utilization of glycerol. Swi1 is in a complex with Snf2 in C. albicans, and both proteins are localized in the nucleus independent of the growth form. Deleting SWI1 or SNF2 in C. albicans prevented true hyphal formation and resulted in constitutive pseudohypha-like growth in all media examined. Furthermore, swi1/swi1 mutant was defective in hypha-specific gene expression and avirulent in a mouse model of systemic infection. These data strongly suggest the conserved Swi/Snf complex in C. albicans is required for hyphal development and pathogenicity.  相似文献   
999.
Scanning force microscopy has been used to probe the surface of the emerging pathogenic yeast Candida parapsilosis, in order to get insight into its surface structure and properties at submicrometer scales. AFM friction images eventually show patches with a very strong contrast, showing high lateral interaction with the tip. Adhesion force measurement also reveals a high normal interaction with the tip, and patches show extraordinarily high pull off values. The tip eventually sticks completely at the center of the patches. While an extraordinarily high interaction is measured by the tip at those zones, topographic images show extraordinarily flat topography over those zones, both of which characteristics are consistent with a liquid-like area. High resolution friction images show those zones to be surrounded by microfibrillar structures, concentrically oriented, of a mean width of about 25 nm, structures that become progressively less defined as we move away from the center of the patches. No structure can be appreciated inside the zones of maximum contrast. Also some helical or ribbon-like structure can be resolved from friction images. There is not only an ordered disposition of the microfibrillar structures, but also the adhesion force increases radially in the direction towards the center of the patches. These structures responsible for the high adhesion are thought to be incipient-emerging budding zones. Microfibrillar structures are thought to represent the first steps of chitin biosynthesis and cell wall digestion, with chitin polymers being biosynthesized, associated with other macromolecules of the yeast cell wall. They can be also beta glucan helical structures, made visible in the zone of yeast division due to the action of autolysins. The observed gradient in surface adhesion and elastic properties correlates well with that expected from a biochemical point of view. The higher adhesion force measured could be either due to the different macromolecular nature of the patches, or to a mechanical adhesion effect due to the different plasticity of that zone. This work reveals the importance of taking into account the dynamic nature of the cell wall physico-chemical properties. Processes related to the normal cell-cycle, as division, can strongly alter the surface morphology and physico-chemical properties and cause important heterogeneities that might have a profound impact on the adhesion behavior of a single cell, which could not be detected by more macroscopic methods.  相似文献   
1000.
AIMS: To evaluate the effect of phosphate buffer concentration on growth and xylitol production by Candida guilliermondii FTI 20037. METHODS AND RESULTS: Fermentations runs were carried out in batch mode employing semisynthetic medium supplemented with phosphate buffer at different concentrations (from 200 to 600 mmol l(-1)). The xylitol yield (Y(P/S)) and volumetric productivity (Q(P)) were improved when the fermentation medium was supplemented with phosphate buffer at concentration of 600 mmol l(-1). Under this condition (Y(P/S)) and (Q(P)) values were 0.75 g g(-1) and 0.66 g l(-1) h(-1), respectively, whereas in the absence of the phosphate buffer these values decreased to 0.52 g g(-1) and 0.44 g l(-1)h(-1) respectively. CONCLUSIONS: The use of phosphate buffer at 600 mmol l(-1) promoted an easier pH control during shake flasks fermentation of C. guilliermondii. In addition the xylitol yield and productivity were significantly improved in response to the supplementation of potassium phosphate in the medium. The increase in these parameters could be related to both osmotic effect and pH control. SIGNIFICANCE AND IMPACT OF THE STUDY: This approach provided a method for improving the xylitol production from semisynthetic medium by C. guilliermondii, being possible their use as a simple strategy to achieve efficient fermentation processes employing complex medium such as lignocellulosic hydrolysates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号