首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1924篇
  免费   75篇
  国内免费   166篇
  2023年   9篇
  2022年   28篇
  2021年   43篇
  2020年   50篇
  2019年   41篇
  2018年   37篇
  2017年   32篇
  2016年   44篇
  2015年   34篇
  2014年   77篇
  2013年   146篇
  2012年   70篇
  2011年   95篇
  2010年   53篇
  2009年   153篇
  2008年   115篇
  2007年   105篇
  2006年   109篇
  2005年   82篇
  2004年   76篇
  2003年   64篇
  2002年   60篇
  2001年   58篇
  2000年   54篇
  1999年   58篇
  1998年   54篇
  1997年   43篇
  1996年   34篇
  1995年   45篇
  1994年   35篇
  1993年   35篇
  1992年   36篇
  1991年   36篇
  1990年   24篇
  1989年   27篇
  1988年   18篇
  1987年   18篇
  1986年   15篇
  1985年   5篇
  1984年   7篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   6篇
  1979年   4篇
  1978年   4篇
  1977年   6篇
  1976年   6篇
  1975年   1篇
  1974年   1篇
排序方式: 共有2165条查询结果,搜索用时 15 毫秒
71.
Abstract

Candida yeast infections are the fourth leading cause of death worldwide. Peptides with antimicrobial activity are a promising alternative treatment for such infections. Here, the antifungal activity of a new antimicrobial peptide—PEP-IA18—was evaluated against Candida species. PEP-IA18 was designed from the primary sequence of profilin, a protein from Spodoptera frugiperda, and displayed potent activity against Candida albicans and Candida tropicalis, showing a minimum inhibitory concentration (MIC) of 2.5?µM. Furthermore, the mechanism of action of PEP-IA18 involved interaction with the cell membrane (ergosterol complexation). Treatment at MIC and/or 10?×?MIC significantly reduced biofilm formation and viability. PEP-IA18 showed low toxicity toward human fibroblasts and only revealed hemolytic activity at high concentrations. Thus, PEP-IA18 exhibited antifungal and anti-biofilm properties with potential applicability in the treatment of infections caused by Candida species.  相似文献   
72.
Candida albicans and Aspergillus fumigatus are dangerous fungal pathogens with high morbidity and mortality, particularly in immunocompromised patients. Innate immune-mediated programmed cell death (pyroptosis, apoptosis, necroptosis) is an integral part of host defense against pathogens. Inflammasomes, which are canonically formed upstream of pyroptosis, have been characterized as key mediators of fungal sensing and drivers of proinflammatory responses. However, the specific cell death pathways and key upstream sensors activated in the context of Candida and Aspergillus infections are unknown. Here, we report that C. albicans and A. fumigatus infection induced inflammatory programmed cell death in the form of pyroptosis, apoptosis, and necroptosis (PANoptosis). Further, we identified the innate immune sensor Z-DNA binding protein 1 (ZBP1) as the apical sensor of fungal infection responsible for activating the inflammasome/pyroptosis, apoptosis, and necroptosis. The Zα2 domain of ZBP1 was required to promote this inflammasome activation and PANoptosis. Overall, our results demonstrate that C. albicans and A. fumigatus induce PANoptosis and that ZBP1 plays a vital role in inflammasome activation and PANoptosis in response to fungal pathogens.  相似文献   
73.
In this study, antagonistic yeast Candida membranifaciens was combined with different concentrations of silicon (Si; 0, 0.1, 0.3 and 0.5% wt/vol) to evaluate the control of blue mold of apple in storage at 20°C and 5°C. Preliminary studies showed that Si at 0.6% or above inhibited mycelial growth of pathogens significantly in vitro. In vitro studies showed that Si at 0.1% had lower effect on yeast growth. In vivo studies showed that combination of different concentrations of Si with C. membranifaciens improved the efficacy of yeast in control of disease better than Si and yeast alone (P < 0.05). Our result showed that the effective concentration of Si is varied based on pathogen isolates and temperature, so that the most effective concentration of Si was 0.5% for isolate P2 at 20°C and 0.5% and 0.1% for isolates P1 and P2 at 5°C.  相似文献   
74.
Abstract

A response surface methodology was used to build a model to predict reductions in uropathogenic Escherichia coli biofilms in response to three compounds: cranberry extract [CB] at 3.0–9.0%, and caprylic acid [CAR] and thymol [TM] at 0.01%–0.05%. The predictive model for microbial reduction had a high regression coefficient (R2?=?0.9988), and the accuracy of the model was verified (R2?=?0.9527). Values of CAR, TM, and the quadratic term CAR2 were the most significant (P?10 reduction) determined by ridge analysis were 8.3% CB +0.04% CAR +0.04% TM at 37?°C for 1?min. The model could be used to predict the most cost-efficient amounts of antimicrobial agents for anti-urinary tract infection products such as catheter lock solution and antimicrobial coatings for catheters.  相似文献   
75.
The aim of this study was to evaluate the effect of silver nanoparticles (SN) against Candida albicans and Candida glabrata adhered cells and biofilms. SN (average diameter 5 nm) were synthesized by silver nitrate reduction with sodium citrate and stabilized with ammonia. Minimal inhibitory concentration (MIC) tests were performed for C. albicans (n = 2) and C. glabrata (n = 2) grown in suspension following the Clinical Laboratory Standards Institute microbroth dilution method. SN were applied to adhered cells (2 h) or biofilms (48 h) and after 24 h of contact their effect was assessed by enumeration of colony forming units (CFUs) and quantification of total biomass (by crystal violet staining). The MIC results showed that SN were fungicidal against all strains tested at very low concentrations (0.4–3.3 μg ml?1). Furthermore, SN were more effective in reducing biofilm biomass when applied to adhered cells (2 h) than to pre-formed biofilms (48 h), with the exception of C. glabrata ATCC, which in both cases showed a reduction ~90%. Regarding cell viability, SN were highly effective on adhered C. glabrata and respective biofilms. On C. albicans the effect was not so evident but there was also a reduction in the number of viable biofilm cells. In summary, SN may have the potential to be an effective alternative to conventional antifungal agents for future therapies in Candida-associated denture stomatitis.  相似文献   
76.
This study examined the influence of bacteria on the virulence and pathogenicity of candidal biofilms. Mature biofilms (Candida albicans-only, bacteria-only, C. albicans with bacteria) were generated on acrylic and either analysed directly, or used to infect a reconstituted human oral epithelium (RHOE). Analyses included Candida hyphae enumeration and assessment of Candida virulence gene expression. Lactate dehydrogenase (LDH) activity and Candida tissue invasion following biofilm infection of the RHOE were also measured. Candida hyphae were more prevalent (p < 0.05) in acrylic biofilms also containing bacteria, with genes encoding secreted aspartyl-proteinases (SAP4/SAP6) and hyphal-wall protein (HWP1) up-regulated (p < 0.05). Candida adhesin genes (ALS3/EPA1), SAP6 and HWP1 were up-regulated in mixed-species biofilm infections of RHOE. Multi-species infections exhibited higher hyphal proportions (p < 0.05), up-regulation of IL-18, higher LDH activity and tissue invasion. As the presence of bacteria in acrylic biofilms promoted Candida virulence, consideration should be given to the bacterial component when managing denture biofilm associated candidoses.  相似文献   
77.
Fungal infections are on the rise, with mortality above 30% in patients with septic Candida infections. Mutants lacking V-ATPase activity are avirulent and fail to acidify endomembrane compartments, exhibiting pleiotropic defects in secretory, endosomal, and vacuolar pathways. However, the individual contribution of organellar acidification to virulence and its associated traits is not known. To dissect their separate roles in Candida albicans pathogenicity we generated knock-out strains for the V0 subunit a genes VPH1 and STV1, which target the vacuole and secretory pathway, respectively. While the two subunits were redundant in many vma phenotypes, such as alkaline pH sensitivity, calcium homeostasis, respiratory defects, and cell wall integrity, we observed a unique contribution of VPH1. Specifically, vph1Δ was defective in acidification of the vacuole and its dependent functions, such as metal ion sequestration as evidenced by hypersensitivity to Zn2+ toxicity, whereas stv1Δ resembled wild type. In growth conditions that elicit morphogenic switching, vph1Δ was defective in forming hyphae whereas stv1Δ was normal or only modestly impaired. Host cell interactions were evaluated in vitro using the Caco-2 model of intestinal epithelial cells, and murine macrophages. Like wild type, stv1Δ was able to inflict cellular damage in Caco-2 and macrophage cells, as assayed by LDH release, and escape by filamentation. In contrast, vph1Δ resembled a vma7Δ mutant, with significant attenuation in host cell damage. Finally, we show that VPH1 is required for fungal virulence in a murine model of systemic infection. Our results suggest that vacuolar acidification has an essential function in the ability of C. albicans to form hyphae and establish infection.  相似文献   
78.
Linoleic acid, and its hydroperoxides and secondary autoxidation products were orally administered to rats (400 mg/rat). Their effects on hepatic lipid metabolism were examined. Linoleic acid reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase. It decreased the CoASH level and caused the accumulation of long-chain acyl-CoA. Hydroperoxides changed the compositions of unsaturated fatty acids in the hepatic lipids and lowered the content of neutral lipids. Secondary products stimulated carnitine palmitoyltransferase and decreased the content of neutral lipids. They reduced the activities of de novo synthesis of fatty acids and acetyl-CoA carboxylase, and the levels of CoASH and acetyl-CoA. Thus, the effect of secondary products was apparently different from those of linoleic acid and its hydroperoxides.  相似文献   
79.
Marine yeasts were collected from coastal and deep sea areas in the Pacific Ocean and the Sea of Japan around central and northern Japan to prepare a novel type of natural seasoning. It was found that one of the marine yeasts collected from the Pacific Ocean off Hachinohe showed a high concentration of γ-aminobutyric acid (GABA) in its extract, about 7–10 times higher than those of commercially available bread yeast and other marine yeasts. The marine yeast isolated and named Hachinohe No. 6 catalyzed the reaction from monosodium glutamate to GABA only in the presence of glucose. Subsequently, several marine yeasts belonging to the genera Pichia and Candida were found to have such catalytic activities, but not those belonging to the genus Saccharomyces. Isolate Hachinohe No. 6 was found to have the highest catalytic activity among the yeasts examined in this study.  相似文献   
80.
In order to elucidate the interaction of lactic acid bacteria with the immune system, immune responses to the lactic acid bacteria, Bifidobacterium longum and Lactobacillus acidophilus, were examined in mice fed with each organism. In mice fed with B. longum for more than 8 weeks, an antibody response was detected to the cytoplasm of B. longum, but not to the cell wall. On the other hand, in mice fed with L. acidophilus for more than 6 weeks, an antibody response was detected to both the cytoplasm and cell wall of L. acidophilus. Moreover, feeding each organism for 2 weeks enhanced the proliferative response of Peyer’s patch (PP) cells to the cell fraction against which the serum antibody was detected. However, this was not found with spleen cells. These results suggest that mucosal stimulation by lactic acid bacteria may induce a systemic immune response to them.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号