首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25475篇
  免费   1400篇
  国内免费   976篇
  27851篇
  2023年   386篇
  2022年   563篇
  2021年   662篇
  2020年   677篇
  2019年   905篇
  2018年   924篇
  2017年   593篇
  2016年   589篇
  2015年   704篇
  2014年   1564篇
  2013年   2120篇
  2012年   1436篇
  2011年   1874篇
  2010年   1354篇
  2009年   1131篇
  2008年   1161篇
  2007年   1193篇
  2006年   1017篇
  2005年   894篇
  2004年   758篇
  2003年   680篇
  2002年   564篇
  2001年   360篇
  2000年   347篇
  1999年   340篇
  1998年   301篇
  1997年   270篇
  1996年   262篇
  1995年   222篇
  1994年   219篇
  1993年   218篇
  1992年   180篇
  1991年   175篇
  1990年   144篇
  1989年   119篇
  1988年   106篇
  1987年   99篇
  1986年   105篇
  1985年   209篇
  1984年   378篇
  1983年   317篇
  1982年   300篇
  1981年   227篇
  1980年   198篇
  1979年   174篇
  1978年   145篇
  1977年   143篇
  1976年   128篇
  1975年   106篇
  1973年   111篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
962.
Scale matters     
During meiosis in many organisms, homologous chromosomes engage in numerous recombination events initiated by DNA double-strand breaks (DSBs) formed by the Spo11 protein. DSBs are distributed nonrandomly, which governs how recombination influences inheritance and genome evolution. The chromosomal features that shape DSB distribution are not well understood. In the budding yeast Saccharomyces cerevisiae, trimethylation of lysine 4 of histone H3 (H3K4me3) has been suggested to play a causal role in targeting Spo11 activity to small regions of preferred DSB formation called hotspots. The link between H3K4me3 and DSBs is supported in part by a genome-wide spatial correlation between the two. However, this correlation has only been evaluated using relatively low-resolution maps of DSBs, H3K4me3 or both. These maps illuminate chromosomal features that influence DSB distributions on a large scale (several kb and greater) but do not adequately resolve features, such as chromatin structure, that act on finer scales (kb and shorter). Using recent nucleotide-resolution maps of DSBs and meiotic chromatin structure, we find that the previously described spatial correlation between H3K4me3 and DSB hotspots is principally attributable to coincident localization of both to gene promoters. Once proximity to the nucleosome-depleted regions in promoters is accounted for, H3K4me3 status has only modest predictive power for determining DSB frequency or location. This analysis provides a cautionary tale about the importance of scale in genome-wide analyses of DSB and recombination patterns.  相似文献   
963.
Cellular senescence is a stable cell cycle arrest that can be induced by stresses such as telomere shortening, oncogene activation or DNA damage. Senescence is a potent anticancer barrier that needs to be circumvented during tumorigenesis. The cell cycle regulator p16INK4a is a key effector upregulated during senescence. Polycomb repressive complexes (PRCs) play a crucial role in silencing the INK4/ARF locus, which encodes for p16INK4a, but the mechanisms by which PRCs are recruited to this locus as well as to other targets remain poorly understood. Recently we discovered the ability of the homeobox proteins HLX1 (H2.0-like homeobox 1) and HOXA9 (Homeobox A9) to bypass senescence. We showed that HLX1 and HOXA9 recruit PRCs to repress INK4a, which constitutes a key mechanism explaining their effects on senescence. Here we provide evidence for the regulation of additional senescence-associated PRC target genes by HLX1 and HOXA9. As both HLX1 and HOXA9 are oncogenes implicated in leukemogenesis, we discuss the implications that the collaboration between Homeobox proteins and PRCs has for senescence and cancer.  相似文献   
964.
Comment on: Liu J, et al. Cell Cycle 2012; 11:2643-9.  相似文献   
965.
966.
Multipotent mesenchymal stem/stromal cells (MSCs) are capable of differentiating into a variety of cell types from different germ layers. However, the molecular and biochemical mechanisms underlying the transdifferentiation of MSCs into specific cell types still need to be elucidated. In this study, we unexpectedly found that treatment of human adipose- and bone marrow-derived MSCs with cyclin-dependent kinase (CDK) inhibitor, in particular CDK4 inhibitor, selectively led to transdifferentiation into neural cells with a high frequency. Specifically, targeted inhibition of CDK4 expression using recombinant adenovial shRNA induced the neural transdifferentiation of human MSCs. However, the inhibition of CDK4 activity attenuated the syngenic differentiation of human adipose-derived MSCs. Importantly, the forced regulation of CDK4 activity showed reciprocal reversibility between neural differentiation and dedifferentiation of human MSCs. Together, these results provide novel molecular evidence underlying the neural transdifferentiation of human MSCs; in addition, CDK4 signaling appears to act as a molecular switch from syngenic differentiation to neural transdifferentiation of human MSCs.  相似文献   
967.
968.
969.
Activation of the NFκB signaling pathway allows the cell to respond to infection and stress and can affect many cellular processes. As a consequence, NFκB activity must be integrated with a wide variety of parallel signaling pathways. One mechanism through which NFκB can exert widespread effects is through controlling the expression of key regulatory kinases. Here we report that NFκB regulates the expression of genes required for centrosome duplication, and that Polo-like kinase 4 (PLK4) is a direct NFκB target gene. RNA interference, chromatin immunoprecipitation, and analysis of the PLK4 promoter in a luciferase reporter assay revealed that all NFκB subunits participate in its regulation. Moreover, we demonstrate that NFκB regulation of PLK4 expression is seen in multiple cell types. Significantly long-term deletion of the NFκB2 (p100/p52) subunit leads to defects in centrosome structure. This data reveals a new component of cell cycle regulation by NFκB and suggests a mechanism through which deregulated NFκB activity in cancer can lead to increased genomic instability and uncontrolled proliferation.  相似文献   
970.
Oncogene-induced senescence (OIS) is a fail-safe mechanism that is developed to suppress cell proliferation caused by aberrant activation of oncoproteins in normal cells. Most of the available literature considers senescence to be caused by activated RAS or RAF proteins. In the current review, we will discuss some of the controversial aspects of RAS- or RAF-induced senescence in different types of normal cells: are tumor suppressors important for OIS? What is the role of DNA damage in OIS? Are there different types of OIS?  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号