首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14555篇
  免费   537篇
  国内免费   986篇
  2024年   30篇
  2023年   198篇
  2022年   268篇
  2021年   358篇
  2020年   403篇
  2019年   339篇
  2018年   361篇
  2017年   274篇
  2016年   321篇
  2015年   503篇
  2014年   662篇
  2013年   787篇
  2012年   543篇
  2011年   709篇
  2010年   597篇
  2009年   642篇
  2008年   646篇
  2007年   628篇
  2006年   639篇
  2005年   606篇
  2004年   577篇
  2003年   478篇
  2002年   473篇
  2001年   298篇
  2000年   324篇
  1999年   313篇
  1998年   323篇
  1997年   319篇
  1996年   304篇
  1995年   312篇
  1994年   302篇
  1993年   269篇
  1992年   269篇
  1991年   224篇
  1990年   207篇
  1989年   184篇
  1988年   193篇
  1987年   149篇
  1986年   144篇
  1985年   139篇
  1984年   187篇
  1983年   109篇
  1982年   118篇
  1981年   79篇
  1980年   82篇
  1979年   58篇
  1978年   38篇
  1977年   32篇
  1976年   23篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
植物叶发育调控机理研究的进展   总被引:11,自引:0,他引:11  
黄海 《植物学通报》2003,20(4):416-422
在植物的营养生长阶段,叶原基从植物地上部分顶端分生组织的周边区形成,在一系列细胞分裂和分化程序的指导下,最终发育成叶。近年来,通过遗传学和分子生物学研究已经鉴定和克隆了一批参与叶发育调控的关键基因,植物激素在叶原基的诱导和叶形态建成中也起十分重要的作用。目前这个领域的主要研究工作是鉴定调控叶发育的新基因并且解释叶调控基因之间的相互作用,同时了解基因调控和植物激素作用之间的关系。  相似文献   
993.
The Canadian Food Inspection Agency (CFIA) regulates environmental releases of plants with novel traits, which include transgenic plants such as Bt crops. Bt crops are regulated in Canada because they express insect resistance novel to their species. Commercialization of crops with novel traits such as the production of insecticidal Bt proteins requires an approval for environmental release, as well as approvals for use as feed and food. Environmental factors such as potential impacts on non-target species are considered. Insect resistance management (IRM) may be imposed as a condition for environmental release of Bt crops to delay the development of resistance in the target insect. Bt potato and European corn borer-resistant Bt corn have been released with mandatory IRM. The CFIA imposes an IRM plan consisting of appropriate refugia, education of farmers and seed dealers, and monitoring and mitigation. Industry, regulators, government extension staff and public researchers provide expert advice on IRM.  相似文献   
994.
In hypertonicity-stressed (i.e., 600 mOsm) SV40-immortalized rabbit and human corneal epithelial cell layers (RCEC and HCEC, respectively), we characterized the relationship between time-dependent changes in translayer resistance, relative cell volume and modulation of MAPK superfamily activities. Sulforhodamine B permeability initially increased by 1.4- and 2-fold in RCEC and HCEC, respectively. Subsequently, recovery to its isotonic level only occurred in RCEC. Light scattering revealed that in RCEC 1) regulatory volume increase (RVI) extent was 20% greater; 2) RVI half-time was 2.5-fold shorter. However, inhibition of Na-K-2Cl cotransporter and Na/K-ATPase activity suppressed the RVI response more in HCEC. MAPK activity changes were as follows: 1) p38 was wave-like and faster as well as larger in RCEC than in HCEC (90- and 18-fold, respectively); 2) increases in SAPK/JNK activity were negligible in comparison to those of p38; 3) Erk1/2 activity declined to 30-40% of their basal values. SB203580, a specific p38 inhibitor, dose dependently suppressed the RVI responses in both cell lines. However, neither U0126, which inhibits MEK, the kinase upstream of Erk, nor SP600125, inhibitor of SAPK/JNK, had any effect on this response. Taken together, sufficient activation of the p38 limb of the MAPK superfamily during a hypertonic challenge is essential for maintaining epithelial cell volume and translayer resistance. On the other hand, Erk1/2 activity restoration seems to be dependent on cell volume recovery.  相似文献   
995.
A1 adenosine receptors (ARs) reduce, and A2ARs increase intraocular pressure, partly by differentially altering resistance to aqueous humor outflow. It is unknown whether the opposing effects of A1AR and A2AR agonists are mediated at different outflow-pathway cell targets or by opposing actions on a single cell target. We tested whether a major outflow-pathway cell, the trabecular meshwork (TM) cell might constitute the primary AR-agonist target and respond differentially to A1, A2A and A3AR agonists. Receptor activation in human TM cells was identified by applying subtype-selective AR agonists: CPA and ADAC for A1ARs, CGS 21680 and DPMA for A2AARs, and Cl-IB-MECA and IB-MECA for A3ARs. Stimulation of A1, A2A and A3ARs elevated Ca2+, measured with fura-2. Whole-cell patch clamping indicated that AR agonists activated ion channels non-uniformly, possibly reflecting variability in magnitude of agonist-triggered second-messenger responses. A1, A2A and A3AR agonists all reduced volume, determined by calcein cell imaging. The endogenous source of adenosine delivery to the outflow pathway could be the TM cells since these cells were stimulated to release ATP by hypotonic perfusion. We conclude that: (1) TM cells express functional A1, A2A and A3ARs; and (2) the reported differential effects of AR agonists on aqueous humor outflow are not mediated by differential actions on TM-cell Ca2+ and volume, but likely by actions on separate cell targets. Reprint requests should be addressed to: Dr. Mortimer M. Civan, Dept. of Physiology, University of Pennsylvania, Richards Building, Philadelphia, PA 19104-6085. [Tel.: (215)-898-8773; Fax: (215)-573-5851]  相似文献   
996.
We have shown previously that the protease-resistant and neurotoxic prion peptide fragment PrP[106-126] of human PrP incorporates into lipid bilayer membranes to form heterogeneous ion channels, one of which is a Cu(2+)-sensitive fast cation channel. To investigate the role of PrP[106-126]'s hydrophobic core, AGAAAAGA, on its ability to form ion channels and their regulation with Cu(2+), we used the lipid-bilayer technique to examine membrane currents induced as a result of PrP[106-126] (AA/SS) and PrP[106-126] (VVAA/SSSS) interaction with lipid membranes and channel formation. Channel analysis of the mutant (VVAAA/SSS), which has a reduced hydrophobicity due to substitution of hydrophobic residues with the hydrophilic serine residue, showed a significant change in channel activity, which reflects a decrease in the beta-sheet structure, as shown by CD spectroscopy. One of the channels formed by the PrP[106-126] mutant has fast kinetics with three modes: burst, open and spike. The biophysical properties of this channel are similar to those of channels formed with other aggregation-prone amyloids, indicating their ability to form the common beta sheet-based channel structure. The current-voltage (I-V) relationship of the fast cation channel, which had a reversal potential, E(rev), between -40 and -10 mV, close to the equilibrium potential for K(+) ( E(K) = -35 mV), exhibited a sigmoidal shape. The value of the maximal slope conductance (g(max)) was 58 pS at positive potentials between 0 and 140 mV. Cu(2+) shifted the kinetics of the channel from being in the open and "burst" states to the spike mode. Cu(2+) reduced the probability of the channel being open (P(o)) and the mean open time (T(o)) and increased the channel's opening frequency (F(o)) and the mean closed time (T(c)) at a membrane potential ( V(m)) between +20 and + 140 mV. The fact that Cu(2+) induced changes in the kinetics of this channel with no changes in its conductance, indicates that Cu(2+) binds at the mouth of the channel via a fast channel block mechanism. The Cu(2+)-induced changes in the kinetic parameters of this channel suggest that the hydrophobic core is not a ligand Cu(2+) site, and they are in agreement with the suggestion that the Cu(2+)-binding site is located at M(109) and H(111) of this prion fragment. Although the data indicate that the hydrophobic core sequence plays a role in PrP[106-126] channel formation, it is not a binding site for Cu(2+). We suggest that the role of the hydrophobic region in modulating PrP toxicity is to influence PrP assembly into neurotoxic channel conformations. Such conformations may underlie toxicity observed in prion diseases. We further suggest that the conversions of the normal cellular isoform of prion protein (PrP(c)) to abnormal scrapie isoform (PrP(Sc)) and intermediates represent conversions to protease-resistant neurotoxic channel conformations.  相似文献   
997.
We have expressed in yeast the different subunits of AMP-activated protein kinase (AMPK) and, by using the two-hybrid system, we have found a glucose-regulated interaction between alpha 2 catalytic and gamma 1 regulatory subunits. This regulation was not affected by known regulators of the corresponding yeast orthologue, the SNF1 complex, such as Reg1 or Hxk2, but it was affected by deletion of regulatory subunits of yeast type 2A protein phosphatase (PP2A) complex. We have also found that Tpd3 and PR65 alpha, the corresponding yeast and mammalian A subunits of PP2A, interacted with AMPK alpha 2 both in yeast and mammals, respectively. This interaction occurred only through the regulatory domain of this subunit. These results suggested a direct involvement of PP2A complex in regulating the interaction between AMPK alpha 2 and gamma 1 in a glucose-dependent manner.  相似文献   
998.
We have previously proposed a model for the fold of the N-terminal domain of the small, regulatory subunit (SSU) of acetohydroxyacid synthase isozyme III. The fold is an alpha-beta sandwich with betaalphabetabetaalphabeta topology, structurally homologous to the C-terminal regulatory domain of 3-phosphoglycerate dehydrogenase. We suggested that the N-terminal domains of a pair of SSUs interact in the holoenzyme to form two binding sites for the feedback inhibitor valine in the interface between them. The model was supported by mutational analysis and other evidence. We have now examined the role of the C-terminal portion of the SSU by construction of truncated polypeptides (lacking 35, 48, 80, 95, or 112 amino acid residues from the C terminus) and examining the properties of holoenzymes reconstituted using these constructs. The Delta35, Delta48, and Delta80 constructs all lead to essentially complete activation of the catalytic subunits. The Delta80 construct, corresponding to the putative N-terminal domain, has the highest level of affinity for the catalytic subunits and leads to a reconstituted enzyme with k(cat)/K(M) about twice that of the wild-type enzyme. On the other hand, none of these constructs binds valine or leads to a valine-sensitive enzyme on reconstitution. The enzyme reconstituted with the Delta80 construct does not bind valine, either. The N-terminal portion (about 80 amino acid residues) of the SSU is thus necessary and sufficient for recognition and activation of the catalytic subunits, but the C-terminal half of the SSU is required for valine binding and response. We suggest that the C-terminal region of the SSU contributes to monomer-monomer interactions, and provide additional experimental evidence for this suggestion.  相似文献   
999.
1000.
The degree of sequence conservation of arginine repressor proteins (ArgR) and of the cognate operators (tandem pairs of 18 bp imperfect palindromes, ARG boxes) in evolutionarily distant bacteria is unusually high, and the global mechanism of ArgR-mediated regulation appears to be similar. However, here we demonstrate that the arginine repressor from the hyperthermophilic bacterium Thermotoga neapolitana (ArgR(Tn)) exhibits characteristics that clearly distinguish this regulator from the well-studied homologues from Escherichia coli, Bacillus subtilis and B.stearothermophilus. A high-resolution contact map of ArgR(Tn) binding to the operator of the biosynthetic argGHCJBD operon of Thermotoga maritima indicates that ArgR(Tn) establishes all of its strong contacts with a single ARG box-like sequence of the operator only. Protein array and electrophoretic mobility-shift data demonstrate that ArgR(Tn) has a remarkable capacity to bind to arginine operators from Gram-negative and Gram-positive bacteria, and to single ARG box-bearing targets. Moreover, the overall effect of L-arginine on the apparent K(d) of ArgR(Tn) binding to various cognate and heterologous operator fragments was minor with respect to that observed with diverse bacterial arginine repressors. We demonstrate that this unusual behaviour for an ArgR protein can, to a large extent, be ascribed to the presence of a serine residue at position 107 of ArgR(Tn), instead of the highly conserved glutamine that is involved in arginine binding in the E.coli repressor. Consistent with these results, ArR(Tn) was found to behave as a superrepressor in E.coli, inhibiting growth in minimal medium, even supplemented with arginine, whereas similar constructs bearing the S107Q mutant allele did not inhibit growth. We assume that ArgR(Tn), owing to its broad target specificity and its ability to bind single ARG box sequences, might play a more general regulatory role in Thermotoga  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号