首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14920篇
  免费   595篇
  国内免费   758篇
  16273篇
  2024年   90篇
  2023年   224篇
  2022年   286篇
  2021年   367篇
  2020年   413篇
  2019年   352篇
  2018年   373篇
  2017年   285篇
  2016年   326篇
  2015年   509篇
  2014年   663篇
  2013年   789篇
  2012年   553篇
  2011年   709篇
  2010年   597篇
  2009年   643篇
  2008年   647篇
  2007年   628篇
  2006年   639篇
  2005年   606篇
  2004年   577篇
  2003年   479篇
  2002年   473篇
  2001年   298篇
  2000年   326篇
  1999年   313篇
  1998年   325篇
  1997年   319篇
  1996年   305篇
  1995年   314篇
  1994年   302篇
  1993年   269篇
  1992年   269篇
  1991年   224篇
  1990年   207篇
  1989年   184篇
  1988年   193篇
  1987年   149篇
  1986年   144篇
  1985年   139篇
  1984年   187篇
  1983年   109篇
  1982年   118篇
  1981年   79篇
  1980年   82篇
  1979年   58篇
  1978年   38篇
  1977年   32篇
  1976年   23篇
  1974年   9篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
961.
A dynamic model is proposed for shear stress induced adenosine triphosphate (ATP) release from endothelial cells (ECs). The dynamic behavior of the ATP/ADP concentration at the endothelial surface by viscous shear flow is investigated through simulation studies based on the dynamic ATP release model. The numerical results demonstrate that the ATP/ADP concentration against time at endothelium-fluid interface predicted by the dynamic ATP release model is more consistent with the experimental observations than that predicted by previous static ATP release model.  相似文献   
962.
963.
Rate and equilibrium measurements of ryanodine binding to terminal cysternae fractions of heavy sarcoplasmic reticulum vesicles demonstrate that its activation by high concentrations of monovalent salts is based on neither elevated osmolarity nor ionic strength. The effect of the ions specifically depends on their chemical nature following the Hofmeister ion series for cations (Li+ < NH+ 4 < K∼ Cs+≤ Na+) and anions (gluconate < Cl < NO3 ∼ ClO4 ∼ SCN) respectively, indicating that both are involved in the formation of the salt-protein complex that can react with ryanodine. Activation by rising salt concentrations exhibits saturation kinetics with different dissociation constants (25–11 m) and different degrees of cooperativity (n= 1.5–4.0) for the respective salts. Maximal second order binding rates between 40,000 and 80,000 (m −1· sec−1) were obtained for chlorides and nitrates of 1a group alkali ions with the exception of lithium supporting only rates of maximally 10,000 (M−1· sec−1). The nitrogen bases, NH+ 4 and Tris+, in combination with chloride or nitrate, behave divergently. High maximal binding rates were achieved only with NH4NO3. The dissociation constants for the ryanodine–protein complexes obtained by measurements at equilibrium proved to depend differently on salt concentration, yet, converging to 1–3 nm for the applied salts at saturating concentrations. The salts do not affect dissociation of the ryanodine protein complex proving that the effect of salts on the protein's affinity for ryanodine is determined by their effect on the on-rate of ryanodine binding. ATP and its analogues modify salt action resulting in elevated maximal binding rates and reduction or abolition of binding cooperativity. Linear relations have been obtained by comparing the rates of ryanodine binding at different salt concentrations with the rates or the initial amplitudes (15 sec) of salt induced calcium release from actively loaded heavy vesicles indicating that the various salts promote specifically and concentration dependently channel opening and its reaction with ryanodine. Received: 9 February 1998/Revised: 24 April 1998  相似文献   
964.
965.
966.
967.
Early studies on cell cycle regulation were based on experiments in model systems (Yeast, Xenopus, Starfish, Drosophila) and have shaped the way we understand many events that control the cell cycle. Although these model systems are of great value, the last decade was highlighted by studies done in human cells and using in vivo mouse models. Mouse models are irreplaceable tools for understanding the genetics, development, and survival strategies of mammals. New developments in generating targeting vectors and mutant mice have improved our approaches to study cell cycle regulation and cancer. Here we summarize the most recent advances of mouse model approaches in dissecting the mechanisms of cell cycle regulation and the relevance to human disease. W. Li and S. Kotoshiba contributed equally.  相似文献   
968.
It has commonly been argued that many territorial species select their breeding sites following an ideal despotic distribution model, in which the most productive, high-quality territories are more frequently occupied. Theoretical and empirical studies have shown that this occupancy pattern may have population regulatory consequences, leading to density dependence in heterogeneous habitats. During a 9-year research project in a forested area of south-eastern Spain, we tested some of the predictions of the ideal despotic distribution model and the site-dependent population regulation theory in a migratory raptor species, the booted eagle Hieraaetus pennatus . Contrary to the predictions of the despotic model, our results showed that the temporal pattern of territorial occupation did not differ from randomness, and that the territory occupancy rate was not significantly related to the reproductive parameters considered. At population level, the breeding variables were density independent, suggesting the absence of site-dependent regulation. In addition, we were unable to find significant differences in the habitat characteristics between high-quality and low-quality territories, classified according to the criteria of both occupancy frequency and average productivity. Overall, our results suggest that booted eagles select their territories at random, probably due to the lack of strong environmental heterogeneity, and that occupancy rate is not a good measure of territory quality for the population studied.  相似文献   
969.
The therapeutic agents flunarizine and lomerizine exhibit inhibitory activities against a variety of ion channels and neurotransmitter receptors. We have optimized their scaffolds to obtain more selective N-type calcium channel blockers. During this optimization, we discovered NP118809 and NP078585, two potent N-type calcium channel blockers which have good selectivity over L-type calcium channels. Upon intraperitoneal administration both compounds exhibit analgesic activity in a rodent model of inflammatory pain. NP118809 further exhibits a number of favorable preclinical characteristics as they relate to overall pharmacokinetics and minimal off-target activity including the hERG potassium channel.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号