首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5140篇
  免费   54篇
  国内免费   59篇
  5253篇
  2023年   14篇
  2022年   22篇
  2021年   35篇
  2020年   88篇
  2019年   78篇
  2018年   84篇
  2017年   62篇
  2016年   30篇
  2015年   80篇
  2014年   231篇
  2013年   269篇
  2012年   241篇
  2011年   394篇
  2010年   260篇
  2009年   212篇
  2008年   233篇
  2007年   212篇
  2006年   201篇
  2005年   174篇
  2004年   190篇
  2003年   165篇
  2002年   106篇
  2001年   60篇
  2000年   103篇
  1999年   98篇
  1998年   132篇
  1997年   119篇
  1996年   119篇
  1995年   123篇
  1994年   89篇
  1993年   88篇
  1992年   105篇
  1991年   89篇
  1990年   87篇
  1989年   82篇
  1988年   78篇
  1987年   76篇
  1986年   58篇
  1985年   60篇
  1984年   83篇
  1983年   54篇
  1982年   54篇
  1981年   36篇
  1980年   30篇
  1979年   9篇
  1978年   12篇
  1977年   11篇
  1976年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有5253条查询结果,搜索用时 15 毫秒
151.
In this article, we demonstrate that an increase in intracellular Ca2+ concentration may represent a specific common step(s) in the mechanism(s) of action of glutamate (Glu) and depolarizing agents on formation of inositol phosphates (IPs) in 8-day-old rat forebrain synaptoneurosomes. In fact, A23187, a Ca2+ ionophore, induces a dose-dependent accumulation of IPs, which is not additive with that evoked by Glu and K+ but is slightly synergistic with that induced by carbachol. In addition, Glu and K+ augment the intracellular Ca2+ concentration in synaptoneurosome preparations as measured by the fura-2 assay. The absence of external Ca2+ decreases basal and Glu-, and K(+)-stimulated formation of IPs. Cd2+ (100 microM) fully inhibits both Glu- and K(+)-evoked formation of IPs without affecting the carbachol-elicited response of IPs. Zn2+ inhibits Glu- and K(+)-stimulated accumulation of IPs (IC50 approximately 0.4 mM) but with a lower affinity than Cd2+ (IC50 approximately 0.035 mM). The organic Ca2+ channel blockers verapamil (10 microM), nifedipine (10 microM), omega-conotoxin (2 microM), and amiloride (10 microM) as well as the inorganic blockers Co2+ (100 microM) and La3+ (100 microM) block neither Glu- nor K(+)-evoked formation of IPs, a result suggesting that the opening of the L-, T-, N-, or P-type Ca2+ channels does not participate in these responses. All these data suggest that an increase in intracellular Ca2+ concentration resulting from an influx of Ca2+, sensitive to Cd2+ but not to other classical Ca2+ antagonists, may play a key role in the transduction mechanism activated by Glu or depolarizing agents.  相似文献   
152.
The actions of the excitatory amino acid N-methyl-D-aspartate (NMDA) on the accumulation of 3H-inositol polyphosphate isomers in rat cerebral cortex slices have been examined over short (less than 5 min) incubation periods. NMDA caused the dose-dependent accumulation of only [3H]inositol monophosphate and [3H]inositol bisphosphate (maximal effect between 0.3 and 1 mM), with no increase in [3H]inositol trisphosphate ([3H]InsP3) and [3H]inositol tetrakisphosphate ([3H]InsP4). HPLC analysis confirmed this, showing no increases in the breakdown products of [3H]Ins(1,3,4,5)P4. When present with the muscarinic agonist carbachol (1 mM), high concentrations of NMDA (1 mM) could almost totally inhibit carbachol-induced accumulation of 3H-inositol polyphosphates. In contrast, at lower concentrations of NMDA (10 microM), the inhibitory effect was replaced with a synergistic accumulation of inositol polyphosphates, especially [3H]InsP4 and [3H]InsP3. The inhibitory effects of NMDA were only apparent when extracellular Ca2+ was present, although incubation in media with no added Ca2+ resulted in somewhat reduced stimulatory responses to NMDA alone, but suppressed totally the inhibitory effects of 1 mM NMDA and reduced the synergistic effects of 10 microM NMDA on carbachol responses. These studies, therefore, reveal Ca(2+)-dependent effects of NMDA indicative of indirect mechanisms of action and show that care must be made in interpreting the effects of NMDA on phosphoinositide metabolism unless the inositol polyphosphate composition has been fully characterised.  相似文献   
153.
Monoclonal antibody HNK-1 reacts with a carbohydrate epitope present in proteins, proteoglycans, and sulfoglucuronylglycolipids (SGGLs). On high-performance TLC plates, SGGLs of the CNS from several species migrated consistently slower than those from the PNS, a result indicating possible differences in the structures. The structural characteristics of the major SGGL, sulfoglucuronylneolactotetraosylceramide (SGGL-1), from CNS was compared with those of SGGL-1 from PNS. Although the composition, sequence, and linkages of the carbohydrate moiety of the SGGL-1 species were identical, SGGL-1 from CNS contained mainly short-chain fatty acids, 16:0, 18:0, and 18:1, amounting to 85% of the total fatty acids, whereas SGGL-1 from PNS contained large proportions (59%) of long-chain fatty acids (greater than 18:0). These differences in the fatty acid composition accounted for the different migration pattern observed. The developmental expression of SGGLs and HNK-1-reactive proteins was studied in rat cerebral cortex between embryonic day (ED) 15 to adulthood. SGGLs in the rat cortex were maximally expressed around ED 19 and almost completely disappeared by postnatal day (PD) 20. This expression was contrary to their increasing expression in the cerebellum and sciatic nerve with postnatal development. Six to eight protein bands with a molecular mass of greater than 160 kDa were HNK-1 reactive in the rat cerebral cortex at different ages. The major HNK-1 reactivity to the 160-kDa protein band seen in ED 19 to PD 10 cortex decreased and completely disappeared from the adult cortex, whereas several other proteins remained HNK-1 reactive even in the adult. Western blot analyses of the neural cell adhesion molecules (N-CAMs) during development of the rat cortex with a polyclonal anti-N-CAM antibody showed that the major HNK-1-reactive protein bands were not N-CAMs. Between PD 1 and 10, 190-200-kDa N-CAM was the major N-CAM, and between PD 15 to adulthood, 180-kDa N-CAM was the only N-CAM present in the rat cortex.  相似文献   
154.
Compaction, occurring at the eight-cell stage of mouse development, is the process of cell flattening and polarisation by which cellular asymmetry is first established. Changes in the pattern of protein phosphorylation have been correlated with this early event of development (TL Bloom, J McConnell: Mol Reprod Dev 26:199-210, 1990). In the study reported here, groups of embryos were treated in ways known to affect particular features of compaction and were then labeled with [32P]orthophosphate; the phosphoproteins obtained were examined following electrophoresis in one and two dimensions. Four-cell embryos were treated with protein synthesis inhibitors, which advance cell flattening. This treatment resulted in only minor differences from the phosphoprotein profile of untreated four-cell embryos. Inhibition of protein synthesis at the eight-cell stage has little effect on cell flattening or polarisation. However, some phosphoproteins that are observed normally in eight-cell but not in four-cell embryos were no longer detectable if labeling took place in the presence of protein synthesis inhibitors. Eight-cell embryos incubated in phorbol 12-myristate 13-acetate, which disrupts various features of compaction, showed a relative increase in the phosphorylation of a group of phosphoprotein spots associated with the eight-cell but not with the four-cell stage. Embryos incubated in Ca2(+)-free medium, which prevents intercellular flattening and delays polarisation, showed a relative decrease in the phosphorylation of the same group of phosphoprotein spots. The behaviour of these phosphoproteins may therefore be correlated with some of the features of compaction.  相似文献   
155.
The biological activities of maitotoxin are strictly dependent on the extracellular calcium concentration and are always associated with an increase of the free cytosolic calcium level. We tested the effects of voltage-sensitive calcium channel blockers (nicardipine and omega-conotoxin) on maitotoxin-induced intracellular calcium increase, membrane depolarization, and inositol phosphate production in PC12 cells. Maitotoxin dose dependently increased the cytosolic calcium level, as measured by the fluorescent probe fura 2. This effect disappeared in a calcium-free medium; it was still observed in the absence of extracellular sodium and was enhanced by the dihydropyridine calcium agonist Bay K 8644. Nicardipine inhibited the effect of maitotoxin on intracellular calcium concentration in a dose-dependent manner. The maitotoxin-induced calcium rise was also reduced by pretreating cells with omega-conotoxin. Pretreatment of cells with maitotoxin did not modify 125I-omega-conotoxin and [3H]PN 200-110 binding to PC12 membranes. Nicardipine and omega-conotoxin inhibition of maitotoxin-evoked calcium increase was reduced by pertussis toxin pretreatment. Maitotoxin caused a substantial membrane depolarization of PC12 cells as assessed by the fluorescent dye bisoxonol. This effect was reduced by pretreating the cells with either nicardipine or omega-conotoxin and was almost completely abolished by the simultaneous pretreatment with both calcium antagonists. Maitotoxin stimulated inositol phosphate production in a dose-dependent manner. This effect was reduced by pretreating the cells with 1 microM nicardipine and was completely abolished in a calcium-free EGTA-containing medium. The findings on maitotoxin-induced cytosolic calcium rise and membrane depolarization suggest that maitotoxin exerts its action primarily through the activation of voltage-sensitive calcium channels, the increase of inositol phosphate production likely being an effect dependent on calcium influx. The ability of nicardipine and omega-conotoxin to inhibit the effect of maitotoxin on both calcium homeostasis and membrane potential suggests that L- and N-type calcium channel activation is responsible for the influx of calcium following exposure to maitotoxin, and not that a depolarization of unknown nature causes the opening of calcium channels.  相似文献   
156.
The administration of melatonin, either peripherally (0.01-10 mg/kg) or intraocularly (0.001-10 mumol/eye), to light-exposed chicks dose-dependently increased serotonin N-acetyltransferase (NAT) activity in retina but not in pineal gland. The effect of melatonin was slightly but significantly reduced by luzindole (2-benzyl-N-acetyltryptamine), and not affected by two other purported melatonin antagonists, N-acetyltryptamine and N-(2,4-dinitrophenyl)-5-methoxytryptamine (ML-23). The elevation of the enzyme activity induced by melatonin was substantially stronger than that evoked by 5-hydroxytryptamine, N-acetyl-5-hydroxytryptamine, or 5-methoxytryptamine. The melatonin-evoked rise in the retinal NAT activity was counteracted by two dopamine D2 receptor agonists, quinpirole and apomorphine, and prevented by the dopamine D2 receptor blocker spiroperidol, and by an inhibitor of dopamine synthesis, alpha-methyl-p-tyrosine. Melatonin (0.1-10 mg/kg i.p.) dose-dependently decreased the levels of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC), as well as the DOPAC/dopamine ratio, in chick retina but not in forebrain. The results obtained (1) indicate that melatonin in vivo potently inhibits dopamine synthesis selectively in retina, and (2) suggest that the increase in retinal NAT activity evoked by melatonin in light-exposed chicks is an indirect action of the compound, and results from the disinhibition of the NAT induction process from the dopaminergic (inhibitory) signal. The results provide in vivo evidence supporting the idea (derived on the basis of in vitro findings) that a mutually antagonistic interaction between melatonin and dopamine operates in retinas of living animals.  相似文献   
157.
Abstract: The effects of arachidonic acid and phorbol esters in the Ca2+-dependent release of glutamate evoked by 4-aminopyridine (4-AP) in rat cerebrocortical synaptosomes were studied. In the absence of arachidonic acid, high concentrations (500 n M ) of 4β-phorbol dibutyrate (4β-PDBu) were required to enhance the release of glutamate. However, in the presence of arachidonic acid, low concentrations of 4β-PDBu (1–50 n M ) were effective in potentiating glutamate exocytosis. This potentiation of glutamate release by phorbol esters was not observed with the methyl ester of arachidonic acid, which does not activate protein kinase C. Moreover, pretreatment of synaptosomes with the protein kinase inhibitor staurosporine also prevented the stimulatory effect by arachidonic acid and phorbol esters. These results suggest that the activation of protein kinase C by both arachidonic acid and phorbol esters may play a role in the potentiation of glutamate exocytosis.  相似文献   
158.
Staves MP  Wayne R  Leopold AC 《Protoplasma》1992,168(3-4):141-152
Summary Hydrostatic pressure applied to one end of a horizontalChara cell induces a polarity of cytoplasmic streaming, thus mimicking the effect of gravity. A positive hydrostatic pressure induces a more rapid streaming away from the applied pressure and a slower streaming toward the applied pressure. In contrast, a negative pressure induces a more rapid streaming toward and a slower streaming away from the applied pressure. Both the hydrostatic pressure-induced and gravity-induced polarity of cytoplasmic streaming respond identically to cell ligation, UV microbeam irradiation, external Ca2+ concentrations, osmotic pressure, neutral red, TEA Cl, and the Ca2+ channel blockers nifedipine and LaCl3. In addition, hydrostatic pressure applied to the bottom of a vertically-oriented cell can abolish and even reverse the gravity-induced polarity of cytoplasmic streaming. These data indicate that both gravity and hydrostatic pressure act at the same point of the signal transduction chain leading to the induction of a polarity of cytoplasmic streaming and support the hypothesis that characean cells respond to gravity by sensing a gravity-induced pressure differential between the cell ends.  相似文献   
159.
Summary The subcellular mechanisms of twitch-force potentiation with paired electrical stimulation was studied in ferret ventricular myocardium using the bioluminescent calcium indicator aequorin. It is demonstrated for the first time that interpolation of an extrasystole in a train of conditioned twitches results in a beat-to-beat change in [Ca2+]i and force. Steady-state twitch force and Ca i 2+ were increased with paired stimulation. Increased [Ca2+]0 in the setting of paired stimulation resulted in an increase in the amplitude of the postextrasystole and associated Ca2+ transient. Verapamil, a Ca2+ channel antagonist, had the opposite effect of increased [Ca2+]0. Postextrasystole potentiation was still present, but diminished in amplitude. These results indicate that postextrasystole potentiation is in part due to a verapamil-depletable store (Ca2+). Postextrasystole potentiation is therefore predominantly dependent on sarcoplasmic reticulum (SR) Ca2+ loading. Ryanodine, an alkaloid which induces Ca2+ leakage from the SR, abolished postextrasystole potentiation; however, in the presence of ryanodine the extrasystole was potentiated. Caffeine, a phosphodiesterase inhibitor which induces SR Ca2+ release and impairs uptake, also abolished postextrasystole potentiation. As with ryanodine there was resultant potentiation of the extrasystole. In the case of caffeine the calcium transient consisted of a second slow component associated with extrasystole twitch potentiation. The results are consistent with sarcolemmal Ca2+ influx playing a role in potentiation of the extrasystole in the presence of an impaired SR. These data indicate that transsarcolemmal Ca2+ influx in the presence of impaired intracellular Ca2+ buffering can directly activate the myofilaments in agreement with reports on human myocardium.Abbreviations C conditioned stimulus - ESI extrasystolic interval - Lmax active tension - PES postextrasystole - PESI postextrasystolic interval - SR sarcoplasmic reticulum - T test stimulus  相似文献   
160.
Summary Some contractile, histochemical, morphological and electrophysiological properties of ferret, Mustela putorius furo, cremaster muscle have been estimated. Histochemical fibre typing revealed the presence of two types of fibres (type I 66.2%, type II 33.8%). Morphometry performed on ATPase-stained transverse sections showed that type I was composed of a large amount (40%) of small(<400 m2) cells. In mammalian Ringer two groups of fibres could be recognized on the basis of the values of resting potential (-69.7 mV and-59.1 mV) and intracellular sodium activity (8.3 mmol·l-1 and 14.1 mmol·l-1, respectively). In experiments on fibre bundles, the elevation of extracellular potassium concentration to 15–200 mmol·l-1 produced contractures that consisted of a well-defined transient or phasic tension followed by a sustained or tonic tension. Properties of activation and inactivation of the tension analysed in small bundles of cut fibres (lengths 0.5–1.0 cm) were of fast- and slow-twitch type for phasic and tonic phase, respectively. In contrast to the phasic component of K contractures, the tonic phase was abolished by Ca2+ withdrawal and inhibited by Ni2+, Cd2+, Co2+, Gd3+ and gallopamil (D600). In Ca2+-free medium the sustained tension was restored by adding Sr2+. It is concluded that in ferret cremaster muscle the presence of slow-twitch fibres would give rise to the tonic component of the K contracture in which an extracellular source of activator Ca2+ is involved. The ability of these fibres to contract with a maintained tension for prolonged periods of time might participate in the temperature regulation of the testes.Abbreviations a i Na intracellular sodium activity - ATPase myosin adenosine triphosphatase - D600 gallopamil - E m membrane potential - E r resting potential - EDL muscle, extensor digitorum longus muscle - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulphonic acid - e.c. excitation-contraction - SDHase succinate dehydrogenase - NADHase nicotinamide adenine, dinucleotide hydrogen-diaphorase - SOL muscle, soleus muscle - T time constant of relaxation - TEACI tetraethylammonium chloride - [Ca]o, [K]o, [Na]o extracellular calcium, potassium, sodium concentration  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号